Volume 52 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
REN Wen-Jing, TANG Yong. A Review of the State of Purinergic Signaling and Psychological Stress[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 33-38. doi: 10.12182/20210160102
Citation: REN Wen-Jing, TANG Yong. A Review of the State of Purinergic Signaling and Psychological Stress[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 33-38. doi: 10.12182/20210160102

A Review of the State of Purinergic Signaling and Psychological Stress

doi: 10.12182/20210160102
More Information
  • Corresponding author: E-mail:tangyong@cdutcm.edu.cn
  • Received Date: 2020-11-10
  • Rev Recd Date: 2020-12-29
  • Publish Date: 2021-01-20
  • Purinergic signaling is involved in multiple physiological and pathological processes. Psychological stress, as an inharmonious state in response to stressors, is closely related to the function or dysfunction of purinergic signaling. Abnormal expression of ATP interceptors caused by stress leads to psychological stress-related diseases, such as anxiety, depression, post-traumatic stress disorder and schizophrenia. Recent studies demonstrate that a complex network of purinergic signaling (such as ATP, adenosine and P2X2R, P2X3R, P2X4R, P2X7R, A1R, A2AR) plays a key role in psychological stress, but the specific mechanism remains to be further studied. And few studies focus on the application of ATP real-time detecting to psychological stress animal models, so the specific biological role of ATP in the process of stress is still unknown. This review will summarize the relationship between purinergic signaling and psychological stress and propose to apply the duplicate ATP real-time detection technology and purinergic compounds on psychological stress research in order to provide novel potential targets for the treatment of stress-related diseases.
  • loading
  • [1]
    BURNSTOCK G. Purinergic nerves. Pharmacol Rev,1972,24(3): 509–581.
    BURNSTOCK G. Introduction to purinergic signaling. Methods Mol Biol,2020,2041: 1–15. doi: 10.1007/978-1-4939-9717-6_1
    BURNSTOCK G. Purinergic receptors. J Theor Biol,1976,62(2): 491–503. doi: 10.1016/0022-5193(76)90133-8
    LONDOS C, COOPER D M, WOLFF J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A,1980,77(5): 2551–2554. doi: 10.1073/pnas.77.5.2551
    VAN CALKER D, MÜLLER M, HAMPRECHT B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem,1979,33(5): 999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x
    BURNSTOCK G, KENNEDY C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol,1985,16(5): 433–440. doi: 10.1016/0306-3623(85)90001-1
    FREDHOLM B B, AP I J, JACOBSON K A, et al. International union of pharmacology. ⅩⅩⅤ. Nomenclature and classification of adenosine receptors. Pharmacol Rev,2001,53(4): 527–552.
    LUSTIG K D, SHIAU A K, BRAKE A J, et al. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A,1993,90(11): 5113–5117. doi: 10.1073/pnas.90.11.5113
    BRAKE A J, WAGENBACH M J, JULIUS D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature,1994,371(6497): 519–523. doi: 10.1038/371519a0
    ZHAO W, ZHANG Y, JI R, et al. Expression of P2X receptors in the rat anterior pituitary. Purinerg Signal,2020,16(1): 17–28. doi: 10.1007/s11302-019-09685-y
    BURNSTOCK G. Purine and purinergic receptors. Brain Neurosci Adv, 2018, 2: 2398212818817494[2020-12-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058212/. doi: 10.1177/2398212818817494.
    TANG Z, YE W, CHEN H, et al. Role of purines in regulation of metabolic reprogramming. Purinerg Signal,2019,15(4): 423–438. doi: 10.1007/s11302-019-09676-z
    BELLEFEUILLE S D, MOLLE C M, GENDRON F P. Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinerg Signal,2019,15(4): 451–463. doi: 10.1007/s11302-019-09678-x
    VELÁZQUEZ-MIRANDA E, DÍAZ-MUÑOZ M, VÁZQUEZ-CUEVAS F G. Purinergic signaling in hepatic disease. Purinerg Signal,2019,15(4): 477–489. doi: 10.1007/s11302-019-09680-3
    KRÜGEL U. Purinergic receptors in psychiatric disorders. Neuropharmacology,2016,104: 212–225. doi: 10.1016/j.neuropharm.2015.10.032
    JACOBSON K A, MÜLLER C E. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology,2016,104: 31–49. doi: 10.1016/j.neuropharm.2015.12.001
    ORTIZ R, ULRICH H, ZARATE C A, Jr, et al. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry,2015,57: 117–131. doi: 10.1016/j.pnpbp.2014.10.016
    CHROUSOS G P, GOLD P W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA,1992,267(9): 1244–1252.
    SHAHRAJABIAN M H, SUN W, SOLEYMANI A, et al. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res, 2020[2020-12-28]. https://doi.org/10.1002/ptr.6888.
    POPPELAARS E S, KLACKL J, PLETZER B, et al. Social-evaluative threat: Stress response stages and influences of biological sex and neuroticism. Psychoneuroendocrinology, 2019, 109: 104378[2020-12-28]. https://doi.org/10.1016/j.psyneuen.2019.104378.
    HALL B S, MODA R N, LISTON C. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiol Stress,2015,1: 174–183. doi: 10.1016/j.ynstr.2014.10.008
    IWATA M, OTA K T, LI X Y, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry,2016,80(1): 12–22. doi: 10.1016/j.biopsych.2015.11.026
    CAO X, LI L P, WANG Q, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med,2013,19(6): 773–777. doi: 10.1038/nm.3162
    KONGSUI R, BEYNON S B, JOHNSON S J, et al. Chronic stress induces prolonged suppression of the P2X7 receptor within multiple regions of the hippocampus: a cumulative threshold spectra analysis. Brain Behav Immun,2014,42: 69–80. doi: 10.1016/j.bbi.2014.05.017
    PIATO A L, ROSEMBERG D B, CAPIOTTI K M, et al. Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res,2011,36(10): 1876–1886. doi: 10.1007/s11064-011-0509-z
    ZIMMERMANN F F, ALTENHOFEN S, KIST L W, et al. Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol Neurobiol,2016,53(4): 2518–2528. doi: 10.1007/s12035-015-9270-7
    KASTER M P, MACHADO N J, SILVA H B, et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A,2015,112(25): 7833–7838. doi: 10.1073/pnas.1423088112
    CRESPO M, LEÓN-NAVARRO D A, MARTÍN M. Early-life hyperthermic seizures upregulate adenosine A(2A) receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy Behav,2018,86: 173–178. doi: 10.1016/j.yebeh.2018.06.048
    HAO T, DU X, YANG S, et al. Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci, 2020, 258: 118099[2020-12-28]. https://doi.org/10.1016/j.lfs.2020.118099.
    ABBRACCHIO M P, BURNSTOCK G, VERKHRATSKY A, et al. Purinergic signalling in the nervous system: an overview. Trends Neurosci,2009,32(1): 19–29. doi: 10.1016/j.tins.2008.10.001
    RIBEIRO D E, RONCALHO A L, GLASER T, et al. P2X7 receptor signaling in stress and depression. Int J Mol Sci, 2019, 20(11): 2778[2020-12-28]. https://doi.org/10.3390/ijms20112778.
    HISAOKA-NAKASHIMA K, AZUMA H, ISHIKAWA F, et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells, 2020, 9(5): 1068[2020-12-28]. https://doi.org/10.3390/cells9051068.
    JIMENEZ-MATEOS E M, SMITH J, NICKE A, et al. Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull,2019,151: 153–163. doi: 10.1016/j.brainresbull.2018.12.008
    METZGER M W, WALSER S M, APRILE-GARCIA F, et al. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinerg Signal,2017,13(2): 153–170. doi: 10.1007/s11302-016-9546-z
    ILLES P, VERKHRATSKY A, TANG Y. Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci, 2019, 12: 331[2020-12-28]. https://doi.org/10.3389/fnmol.2019.00331.
    FAROOQ R K, TANTI A, AINOUCHE S, et al. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology,2018,97: 120–130. doi: 10.1016/j.psyneuen.2018.07.016
    YUE N, HUANG H, ZHU X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation, 2017, 14(1): 102[2020-12-28]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0865-y. doi: 10.1186/s12974-017-0865-y.
    DOMINGOS L B, HOTT S C, TERZIAN A L B, et al. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology,2018,128: 474–481. doi: 10.1016/j.neuropharm.2017.08.005
    WEI L, SYED MORTADZA S A, YAN J, et al. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev,2018,87: 192–205. doi: 10.1016/j.neubiorev.2018.02.005
    HU S, SUN Q, DU W J, et al. Adult stress promotes purinergic signaling to induce visceral pain in rats with neonatal maternal deprivation. Neurosci Bull,2020,36(11): 1271–1280. doi: 10.1007/s12264-020-00575-7
    BORTOLATO M, YARDLEY M M, KHOJA S, et al. Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. Int J Neuropsychopharmacol,2013,16(5): 1059–1070. doi: 10.1017/S1461145712000909
    LI L, ZOU Y, LIU B, et al. Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression. ACS Chem Neurosci,2020,11(24): 4387–4397. doi: 10.1021/acschemneuro.0c00623
    VERMA R, CRONIN C G, HUDOBENKO J, et al. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun,2017,66: 302–312. doi: 10.1016/j.bbi.2017.07.155
    KITTNER H, FRANKE H, FISCHER W, et al. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology,2003,28(3): 435–444. doi: 10.1038/sj.npp.1300043
    WAWRZYNIAK A J, DILSIZIAN V, KRANTZ D S, et al. High concordance between mental stress-induced and adenosine-induced myocardial ischemia assessed using SPECT in heart failure patients: hemodynamic and biomarker correlates. J Nucl Med,2015,56(10): 1527–1533. doi: 10.2967/jnumed.115.157990
    GOMES C V, KASTER M P, TOMÉ A R, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta,2011,1808(5): 1380–1399. doi: 10.1016/j.bbamem.2010.12.001
    LI Y, LI L, WU J, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. Elife, 2020, 9: e57155[2020-12-28]. https://elifesciences.org/articles/57155. doi: 10.7554/eLife.57155.
    PASMAN W J, BOESSEN R, DONNER Y, et al. Effect of caffeine on attention and alertness measured in a home-setting, using web-based cognition tests. JMIR Res Protoc, 2017, 6(9): e169[2020-12-28]. https://www.researchprotocols.org/2017/9/e169/. doi: 10.2196/resprot.6727.
    LEEM Y H, JANG J H, PARK J S, et al. Exercise exerts an anxiolytic effect against repeated restraint stress through 5-HT2A-mediated suppression of the adenosine A2A receptor in the basolateral amygdala. Psychoneuroendocrinology,2019,108: 182–189. doi: 10.1016/j.psyneuen.2019.06.005
    OLIVEIRA L, COSTA A C, NORONHA-MATOS J B, et al. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles. Neuropharmacology,2015,89: 64–76. doi: 10.1016/j.neuropharm.2014.09.004
    PINHEIRO H, GASPAR R, BAPTISTA F I, et al. Adenosine A2A receptor blockade modulates glucocorticoid-induced morphological alterations in axons, but not in dendrites, of hippocampal neurons. Front Pharmacol, 2018, 9: 219[2020-12-28]. https://doi.org/10.3389/fphar.2018.00219.
    BLACKER C J, MILLISCHER V, WEBB L M, et al. EAAT2 as a research target in bipolar disorder and unipolar depression: a systematic review. Mol Neuropsychiatry,2020,5(Suppl 1): 44–59. doi: 10.1159/000501885
    MATOS M, SHEN H Y, AUGUSTO E, et al. Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry,2015,78(11): 763–774. doi: 10.1016/j.biopsych.2015.02.026
    SERCHOV T, SCHWARZ I, THEISS A, et al. Enhanced adenosine A1 receptor and homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162: 107834[2020-12-28]. doi: 10.1016/j.neuropharm.2019.107834.
    SERCHOV T, CLEMENT H W, SCHWARZ M K, et al. Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of homer1a. Neuron,2015,87(3): 549–562. doi: 10.1016/j.neuron.2015.07.010
    FUENTES E, PALOMO I. Extracellular ATP metabolism on vascular endothelial cells: a pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol,2015,75: 1–6. doi: 10.1016/j.vph.2015.05.002
    VILLANUEVA-CASTILLO B, RIVERA-MANCILLA E, HAANES K A, et al. The role of purinergic P2Y12 and P2Y13 receptors in ADPβS-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats. Purinerg Signal,2020,16(1): 73–84. doi: 10.1007/s11302-020-09689-z
    ZHONG J, AMINA S, LIANG M, et al. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front Neurosci, 2016, 10: 304[2020-12-28]. https://doi.org/10.3389/fnins.2016.00304.
    BURNSTOCK G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov,2008,7(7): 575–590. doi: 10.1038/nrd2605
    PENG W, WU Z, SONG K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 2020, 369(6508): eabb0556[2020-12-28]. https://science.sciencemag.org/content/369/6508/eabb0556.long. doi: 10.1126/science.abb0556.
    CIEŚLAK M, CZARNECKA J, ROSZEK K. The roles of purinergic signaling in psychiatric disorders. Acta Biochim Pol,2016,63(1): 1–9. doi: 10.18388/abp.2015_1004
    BURNSTOCK G. The therapeutic potential of purinergic signalling. Biochem Pharmacol,2018,151: 157–165. doi: 10.1016/j.bcp.2017.07.016
    CHEN J F, CUNHA R A. The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson's disease. Purinerg Signal,2020,16(2): 167–174. doi: 10.1007/s11302-020-09694-2
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (919) PDF downloads(27) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint