欢迎来到《四川大学学报(医学版)》
徐崇喜, 唐彬, 曾夕航, 等. 寰枕融合伴寰枢椎脱位的三维非线性有限元模型的建立和分析[J]. 四川大学学报(医学版), 2022, 53(1): 121-126. DOI: 10.12182/20220160203
引用本文: 徐崇喜, 唐彬, 曾夕航, 等. 寰枕融合伴寰枢椎脱位的三维非线性有限元模型的建立和分析[J]. 四川大学学报(医学版), 2022, 53(1): 121-126. DOI: 10.12182/20220160203
XU Chong-xi, TANG Bin, ZENG Xi-hang, et al. Three-Dimensional Nonlinear Finite Element Modeling and Analysis of Concomitant Atlanto-Occipital Fusion and Atlantoaxial Joint Dislocation[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(1): 121-126. DOI: 10.12182/20220160203
Citation: XU Chong-xi, TANG Bin, ZENG Xi-hang, et al. Three-Dimensional Nonlinear Finite Element Modeling and Analysis of Concomitant Atlanto-Occipital Fusion and Atlantoaxial Joint Dislocation[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(1): 121-126. DOI: 10.12182/20220160203

寰枕融合伴寰枢椎脱位的三维非线性有限元模型的建立和分析

Three-Dimensional Nonlinear Finite Element Modeling and Analysis of Concomitant Atlanto-Occipital Fusion and Atlantoaxial Joint Dislocation

  • 摘要:
      目的  使用有限元技术建立正常寰枕枢椎三维非线性有限元模型及寰枕融合伴寰枢椎脱位三维非线性有限元模型,为上颈椎临床研究提供生物力学方法。
      方法  对1例27岁男性志愿者CT数据进行有限元分析,建立正常寰枕枢椎三维非线性有限元模型(正常模型)。对1例35岁寰枕融合伴寰枢椎脱位男性患者CT数据进行有限元分析,使用计算机模拟其在高载荷下单纯韧带断裂的理想状态,建立寰枕融合伴寰枢椎脱位的三维非线性有限元模型(寰枕融合伴寰枢椎脱位模型)。两种模型均在枕骨上表面施加竖直向上的1.5 N·m的扭矩,通过对两种模型在应力下前屈、后伸、侧弯、旋转活动度(ROM)数据做对比分析,以及在1.5 N·m扭矩下的应力与变形分析,验证两种三维非线性有限元模型的有效性。
      结果  研究建立的正常模型在1.5 N·m扭矩载荷下各单元前屈、后伸、旋转运动的最大运动范围与人体力学实验测量结果接近,显示出良好的仿真性,模型应力与变形结果符合力学基本原理,模型的扭矩-角位移表现出明显的非线性特征。寰枕融合伴寰枢椎脱位脱位模型在1.5 N·m扭矩下其寰枕关节活动度与本次正常模型相比,寰枕关节活动度降低,而C1~C2关节活动度在4种情况(屈曲、后伸、侧弯、旋转)加载载荷后,除了旋转运动外,其余活动度均较正常模型有大幅度增加,符合患者临床实际表现。
      结论  通过有限元技术成功建立了寰枕融合伴寰枢椎脱位模型及正常寰枕枢椎三维非线性有限元模型。模型仿真性良好,运动学特征可靠,可以作为一种可靠工具模拟临床疾病。

     

    Abstract:
      Objective  To establish, with finite element technology, a three-dimensional nonlinear finite element model of the normal occipital bone, atlas and axis and a three-dimensional nonlinear finite element model of concomitant atlanto-occipital fusion and atlantoaxial dislocation, providing a biomechanical method for clinical research on the upper cervical spine.
      Methods  Finite element analysis was conducted with the CT data of a 27-year-old male volunteer, and a three-dimensional nonlinear finite element model, i.e., the normal model, of the normal occipital bone, atlas and axis was established accordingly. Finite element analysis was conducted with the CT data of a 35-year-old male patient with concomitant atlanto-occipital fusion and atlantoaxial dislocation. Then, the ideal state of a simple ligament rupture under high load was generated by computer simulation, and a three-dimensional nonlinear finite element model of concomitant atlanto-occipital fusion and atlantoaxial dislocation was established, i.e., the atlanto-occipital fusion with atlantoaxial dislocation model. For both models, a vertical upward torque of 1.5 N·m was applied on the upper surface of the occipital bone. Through comparative analysis of the two models under stress, the data of the range of motion (ROM) for flexion, extension, lateral bending, and rotation were examined. In addition, stress and deformation analysis with 1.5 N·m torque load was conducted to validate the effectiveness of the two three-dimensional nonlinear finite element models established in the study.
      Results  When the normal model established in the study was under 1.5 N·m torque load, it exhibited a maximum ROM for each unit of flexion, extension, and the ROM approximated the experimental measurement results of human mechanics, confirming the validity of the simulation. The stress and deformation results of the model were consistent with the basic principles of mechanics. The moment-angular displacement of the model showed obvious nonlinear characteristics. Compared with the normal model, the atlanto-occipital fusion with atlantoaxial dislocation model showed reduced ROM of the atlanto-occipital joint under a torque of 1.5 N·m, while the ROM of the C1-C2 joint for the four conditions of flexion, posterior extention, lateral bending, and rotation under load, with the exception of rotating motion, was greatly increased compared with that of the normal model, which was in line with the actual clinical performance of the patient.
      Conclusion  The atlanto-occipital fusion with atlantoaxial dislocation model and the three-dimensional nonlinear finite element model of the normal occipital bone, atlas and axis were successfully established by finite element technology. The models had valid simulation and reliable kinematic characteristics, and could be used as a reliable tool to simulate clinical diseases.

     

© 2022 《四川大学学报(医学版)》编辑部 版权所有 cc

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0

/

返回文章
返回