Protection Effect of Dexamethasone on the Memory Impairment and Neuronal Damage of Neonate Rats that Repeatedly Suffered Sevoflurane Exposure
-
摘要:目的 探讨地塞米松(DXMS)对七氟烷(SEVO)致新生大鼠记忆障碍及神经元损伤的影响。方法 将30只5日龄新生SD大鼠随机分为阴性对照(NC)组、SEVO组和SEVO+DXMS组,每组10只。SEVO组和SEVO+DXMS组大鼠连续一周暴露于2.5%七氟烷中,每天2 h,SEVO+DXMS组大鼠每次暴露前给予腹腔注射20 mg/kg地塞米松干预,NC组给予等量安慰剂及运载气体。诱导结束后喂养各组大鼠至幼年期,Morris水迷宫实验用于评价各组大鼠学习和记忆能力;HE和尼氏染色观察各组大鼠脑组织海马区组织形态及神经细胞变化;ELISA检测脑组织匀浆液中一氧化氮(NO)、超氧化物歧化酶(SOD)、丙二醛(MDA)水平变化;qRT-PCR检测组织中沉默调节蛋白1抗原(SIRT1)、过氧化物酶体增殖物激活受体-γ共激活因子-1α(PGC-1α)、叉头蛋白转录因子3α(FOXO3α) mRNA表达变化;Western blot检测海马区caspase-3和SIRT1蛋白表达变化。结果 与NC组相比,SEVO组大鼠脑组织出现严重病变,脑神经细胞数目较NC组减少,SEVO+DXMS组较SEVO组病变程度减轻,神经细胞数量及形态有所恢复;Morris水迷宫实验显示SEVO+DXMS组大鼠穿越隐形平台次数、平台区域滞留时间较SEVO组增加,同时定位航行游泳路程较SEVO组降低;SEVO+DXMS组大鼠脑组织NO及MDA水平较SEVO组降低,SOD水平升高,而与NC组差异无统计学意义;qRT-PCR结果显示SEVO+DXMS组大鼠SIRT1、PGC-1α、FOXO3α mRNA表达水平较SEVO组显著升高,但SIRT1 mRNA表达量仍显著低于NC组;Western blot结果显示SEVO+DXMS组大鼠脑组织SIRT1蛋白含量较SEVO组显著增加,caspase-3蛋白表达减少,但与NC组比较,表达量差异有统计学意义。结论 DXMS可降低SEVO所致氧化应激反应水平,抑制SEVO诱导的神经细胞凋亡,减轻SEVO致新生大鼠脑损伤,改善幼年大鼠学习记忆能力。Abstract:Objective To investigate the protection effect of dexamethasone (DXMS) on the memory impairment and neuronal damage of neonate rats that caused by sevoflurane (SEVO) exposure.Methods 5-days-old newborn SD rats were randomly divided into normal group (NC group) (10 rats), SEVO group (10 rats) and SEVO+DXMS group (10 rats). Rats of SEVO group and SEVO+DXMS group were exposed to 2.5% SEVO 2 h per day for 1 week, meanwhile the rats of SEVO+DXMS group were given 20 mg/kg DXMS treatment before exposure and the normal group was given the same amount of placebo and carrier gas as control. All rats were fed normally till infancy. Then the Morris water maze test was used to assess the learning and memory function of rats of each group. HE and Nissl staining were used to observe the histomorphology and neuronal changes in the hippocampus of rats. ELISA was performed to test the changes in nitric oxide (NO), superoxide dismutase (SOD) and malondialdehyde (MDA) level in brain tissues. The expression of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), fork head protein transcription factor 3α (FOXO3α) mRNA in brain tissue was detected by qRT-PCR. Western blot was used to explore the changes in SIRT1 and caspase-3 protein expression of hippocampus.Results Compared with the NC group, the pathologic damage of hippocampus tissues was severely in SEVO group, and the number of neuronal cells was decreased as well. After SEVO intervention, the degree of pathologic damage was alleviated, and the number of neuronal cells was significantly increased. The Morris water maze test showed that the escape latency, number of platform crossing and target quadrant retention time between SEVO group and SEVO+DXMS group were significant different. The level of NO and MDA in brain of SEVO+DXMS group was significantly decreased than that of SEVO group, while the level of SOD was increased. qRT-PCR showed that the mRNA levels of SIRT1, PGC-1α and FOXO3α in SEVO+DXMS group were significantly higher those in SEVO group, but mRNA level of SIRT1 was still significantly lower than that of NC group. Western blot showed that the expression of SIRT1 protein in SEVO+DXMS group was significantly higher than that of SEVO group, and the expression of caspase-3 was reduced in SEVO+DXMS compared with SEVO group.Conclusion DXMS could reduce the level of oxidative stress and suppress the apoptosis of neuronal cells, reduce SEVO-induced brain damage in neonatal rats and improve learning and memory ability in infant rats.
-
Keywords:
- Dexamethasone /
- Sevoflurance /
- Memory impairment /
- Neuronal damage
-
新生儿由于生理结构发育不完全,离开母体环境后易发生包括肠梗阻、吸入性肺炎及皮肤感染败血症等在内的多种新生儿疾病,临床常需接受各项检查及麻醉诱导,其中婴幼儿全身麻醉以其方法简单、无痛等优点得到广泛应用[1]。七氟烷(sevoflurance, SEVO)是一种新型吸入式全身麻醉药,在幼儿全麻手术中具有药效快、气味芳香、麻醉深度可控、易循环代谢等特点[2-3],但与此同时,越来越多的证据表明3岁以下婴幼儿多次全麻或吸入SEVO可能与成年后认知功能障碍、记忆力减退等神经损害存在潜在相关性[4-5]。地塞米松(dexamethasone, DXMS)是一种人工合成的皮质类固醇,在脑内通常可与皮质醇受体结合参与调节介导细胞内信号转导、基因转录、突触可塑性及机体新陈代谢,糖皮质激素近年来被报道在修复血脑屏障、稳定溶酶体、降低神经细胞损伤和凋亡中发挥重要作用[6-7],临床上已得到广泛应用,但DXMS对七氟烷麻醉所致新生大鼠脑神经损伤是否具有保护作用未见报道。本研究将DXMS应用于SEVO麻醉手术,观察对新生大鼠行为学的影响,探究其可能的保护机制,为临床婴幼儿麻醉药物的合理选择及使用提供新的指导依据。
1. 材料与方法
1.1 材料
Fabius麻醉机(Drager);Vamos气体监护仪(Drager);七氟烷挥发罐(Abbott);地塞米松(河南润弘制药);Morris水迷宫自主活动仪、自动摄像及分析系统(上海软隆科技有限公司);一氧化氮(NO)、超氧化物歧化酶(superoxide dismutase, SOD)、丙二醛(malondialdehyde, MDA)检测试剂盒购自南京建成生物工程研究所;RNA抽提试剂盒购自英潍捷基;反转录及SYBR Green试剂盒购自TaKaRa;蛋白磷酸酶抑制剂(PMSF)、RIPA裂解液、BCA蛋白定量试剂盒均购自上海碧云天;caspase-3、沉默调节蛋白1抗原(SIRT1)多克隆抗体,辣根过氧化物酶标记的山羊抗兔二抗等均购自联科生物;PCR引物由通用生物科技有限公司设计合成,引物序列见表 1。
表 1 引物序列Table 1. Primer sequenceGene Sequence (5′→3′) Length/bp GAPDH Forward: CGAGAAATATGACAACTCCCTCA 23 Reverse: CAGCCCCAGCATCAAAGGTAGGA 23 SIRT1 Forward: GTCGTCATAGTATTGGTGGCGAC 23 Reverse: AGGACGGTGTTTGGCAACTAGG 22 PCG-1α Forward: CAGTGTCCCACCAGAAATCC 20 Reverse: GGGAGGCCTATCCGTTACCG 20 FOXO3α Forward: CCATGTCCTAGGGCTGACCGC 21 Reverse: TTGCGATGCGGCCCTAATACCA 22 1.2 实验动物及分组处理
本研究经西南医科大学动物实验伦理委员会批准,动物处置过程符合《善待实验动物指导性意见》。SPF级健康5日龄SD新生大鼠30只,体质量(10.0±2.0) g,随机分为阴性对照组(NC)、SEVO组、SEVO+DXMS组3组,每组10只。饲养条件为室温(25.0±1.0) ℃、(60.0±5.0)%恒湿,12 h昼夜节律交替。采用自制吸入麻醉箱,将SEVO组与SEVO+DXMS组幼鼠暴露于2.5%SEVO及运载气体(1 L/min氧气+1 L/min空气)环境中,制造SEVO麻醉幼鼠模型[8-9],同时给予NC组幼鼠等量运载气体,每天2 h,连续1周。每次暴露前30 min,给予SEVO+DXMS组大鼠腹腔注射DXMS(20 mg/kg,临用前溶于0.9%生理盐水中),其余两组给予等量生理盐水干预。每次诱导结束后,于室温放置各组幼鼠至正常状态,并在完全苏醒后放回笼中正常饲养,实验结束后保持喂养条件至幼年期(约2~3周),行各指标行为学指标检测并采集组织进行后续实验操作。
1.3 Morris水迷宫检测大鼠行为学指标
水迷宫按方位分为东南西北4个象限,默认东南象限为正中,控制水面高于台面1.5 cm,水温恒定为(25.0±1.0) ℃,实验第1天为适应性训练,将大鼠放入无平台的水迷宫,自由游泳训练3~5 min,无不会游泳的大鼠。实验后第2~7天分别将各组大鼠从水池的四壁放入水中,记录大鼠穿越隐形平台次数、平台区域滞留时间及定位航行游泳路程等,比较各组大鼠学习和记忆能力间的差异。
1.4 大鼠脑组织形态学观察
1.4.1 HE染色
实验结束后取各组大鼠腹腔注射3%戊巴比妥钠麻醉下处死大鼠,沿脑脊线开颅取出脑组织,放于体积分数为4%多聚甲醛溶液低温固定过夜,行常规石蜡包埋。采用振动显微切片机对包埋的脑组织行冠状面切片,切至海马层面,取切片经二甲苯和梯度酒精脱蜡,PBS冲洗后经0.5%苏木素伊红(HE)染色,封片置于光学显微镜下观察各组大鼠海马组织病理变化。
1.4.2 尼氏染色及神经元计数
取各组大鼠海马组织切片,行常规烤片、脱蜡、梯度水化,PBS冲洗3次,每次5 min,将处理后的切片置于1%甲苯胺蓝中60 ℃孵育40 min,用蒸馏水洗净切片,梯度脱水后采用二甲苯透明,封片。光学显微镜下观察并记录海马组织神经元细胞数量,每张切片随机取5个视野,取均数比较各组大鼠海马组织神经元数量变化。
1.5 脑组织NO、SOD、MDA水平检测
分离各组大鼠完成的脑部海马区组织,于冰上充分匀浆制备10%匀浆液,3 ℃ 4 000 r/min低速离心10 min取上清,取适量组织上清液,分别参照NO、SOD、MDA检测试剂盒说明书操作,采用酶标仪检测不同波长处的吸光值,比较各组大鼠脑组织NO、SOD、MDA水平差异。
1.6 荧光实时定量PCR(qRT-PCR)检测大鼠脑组织相关mRNA表达变化
取大鼠脑组织置于液氮中急速降温并充分匀浆,参照TRIzol试剂盒说明书提取各组大鼠脑组织总RNA,经核酸定量检测总RNA含量及纯度后,逆转RNA合成cDNA,各取100 ng cDNA参照SYBR Green试剂盒说明书混合后反应体系为25 μL,设置反应参数为预变性95 ℃ 3 min;扩增反应95 ℃ 5 s,63 ℃ 40 s,72 ℃ 5 min循环40次;并设置95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s做熔解曲线。目的基因表达分析采用2-ΔΔCt相对定量法计算分析各组大鼠相关SIRT1、过氧化物酶体增殖激物激活受体-γ共激活因子-1α(PGC-1α)、叉头蛋白转录因子3α(FOXO3α) mRNA表达差异变化。
1.7 Western blot检测大鼠脑组织相关蛋白表达变化
提取各组大鼠脑组织总蛋白,将其4 ℃ 12 000 r/min离心15 min,收集裂解产物上清液,采用BCA蛋白定量法检测各样本组织蛋白总浓度。调整各组蛋白浓度至一致后加入等量1×SDS上样缓冲液100 ℃高温煮沸蛋白。行12%SDS-PAGE凝胶电泳分离蛋白条带并转移至聚偏二氟乙烯膜(PVDF)上,5%牛血清白蛋白(BSA)室温封闭2 h后行常规抗体孵育,洗涤目的条带后采用凝胶成像仪曝光成像,采集照片分析各组蛋白条带相对灰度值,比较各组大鼠SIRT1、caspase-3等蛋白表达差异,以GAPDH作内参蛋白。以目的蛋白与内参蛋白灰度值的比值作为目的蛋白的相对表达量。
1.8 统计学方法
计量资料以x±s表示。多组间比较采用单因素方差分析,两组间比较采用t检验,全部实验重复3次取平均数后进行数据分析,P<0.05为差异有统计学意义。
2. 结果
2.1 DXMS对SEVO麻醉致小鼠记忆障碍的影响
见表 2。经SEVO诱导后,SEVO组大鼠穿越隐形平台次数及在平台区域滞留时间较NC组大鼠显著减少,同时定位航行游泳总路程较NC组大鼠增加(P<0.05),提示SEVO麻醉致大鼠学习及记忆能力减弱。同时给予DXMS干预后,SEVO+DXMS组大鼠穿越隐形平台次数及平台区域滞留时间较SEVO组大鼠增加,定位航行游泳路程较SEVO组减少(P<0.05),但仍与NC组间差异具有统计学意义(P<0.05)。
表 2 DXMS对SEVO麻醉致小鼠学习和记忆障碍的影响Table 2. Effects of DXMS on learning and memory impairment in SEVO anesthetized miceGroup n Times of across the
stealth platformPlatform area
detention time/sPosition navigation
swimming distance/cmNC 10 3.41±0.82 46.73±7.21 531.22±68.31 SEVO 10 1.27±0.44* 18.96±5.64* 766.49±81.25* SEVO+DXMS 10 2.61±0.90#, * 30.11±8.03#, * 683.50±83.60#, * *P<0.05, vs.NC group;#P<0.05,vs. SEVO group 2.2 各组大鼠脑组织病理变化及神经元损伤情况
HE染色结果显示NC组大鼠脑组织细胞排列规则紧凑,海马组织形态及结构完整,未见显著病理变化。SEVO诱导大鼠吸入麻醉后可见SEVO组大鼠脑组织海马区细胞出现胞浆染色稀疏,神经细胞形态异常,细胞核固缩、胞质溶解等现象,细胞间隙增大,提示连续吸入SEVO能够诱导大鼠脑损伤。同时给予DXMS干预后SEVO+DXMS组大鼠脑组织损伤程度较SEVO组明显减轻,神经细胞形态结构较为正常,同时可见神经细胞较SEVO组显著增多,固缩破碎的细胞核减少。经尼氏染色后观察并对各组大鼠神经细胞计数,结果显示NC组大鼠海马组织内蓝染尼氏小体密布,无明显空泡,提示神经细胞状态良好。SEVO组大鼠染色后可见细胞水肿至呈现空泡状态,可见部分尼氏小体偏移,且着色较浅提示神经细胞极性较差,神经细胞数量(37.50±6.10)少于NC组(101.00±12.60)(P<0.05)。SEVO+DXMS组大鼠神经细胞数量较SEVO组增加(P<0.05),细胞极性较为恢复,空泡细胞数量也随之大幅减少,但神经元细胞平均数(69.00±7.71)仍与NC组差异有统计学意义(P<0.05),见图 1。
图 1 DXMS对SEVO致大鼠海马组织病理变化和神经元损伤的影响Figure 1. Effects of DXMS on the SEVO-induced histopathological and neuronal damages of hippocampus in ratsA: HE and Nissl staining images of histopathological and neuronal changes of hippocampus in rats (arrow:Nissl bodies); B:Changes of neuronal cell counts in brain tissues of different groups of rats. *P < 0.05, vs.NC group; #P < 0.05, vs. SEVO group2.3 各组大鼠脑组织NO、SOD、MDA水平比较
如图 2,与NC组相比,SEVO组大鼠脑组织海马区NO、MDA水平增加,SOD水平减少(P<0.05);而与SEVO组相比较,SEVO+DXMS组大鼠脑组织海马区NO、MDA含量降低(P<0.05),SOD水平增加(P<0.05),但组织中NO、MDA、SOD水平仍与NC组差异有统计学意义(P<0.05)。
2.4 各组大鼠脑组织SIRT1、PGC-1α、FOXO3α mRNA表达差异
与NC组相比,SEVO组大鼠脑组织SIRT1、PGC-1α、FOXO3α mRNA表达水平均有不同程度的降低(P<0.05);同时给予DXMS干预后SEVO+DXMS组大鼠SIRT1、PGC-1α、FOXO3α mRNA表达则较SEVO组升高(P<0.05),同时SEVO+DXMS组大鼠SIRT1 mRNA表达量仍低于NC组(P<0.05),而PGC-1α、FOXO3α mRNA表达量与NC组间差异无统计学意义,见图 3。
2.5 各组大鼠脑组织SIRT1、caspase-3蛋白表达差异
见图 4。与NC组相比,SEVO组caspase-3蛋白表达增加(P<0.05),SIRT1表达减少(P<0.05),与SIRT1 mRNA表达水平变化一致;而相较于SEVO组,SEVO+DXMS组大鼠脑组织海马区caspase-3蛋白表达量减少(P<0.05),SIRT1表达量升高(P<0.05);但SEVO+DXMS组两蛋白表达量仍与NC组差异具有统计学意义(P<0.05)。
3. 讨论
近年来麻醉药物致儿童学习及行为异常的发生受到广泛重视,并有临床调查表明,3岁以下婴幼儿在接受全麻后的行为异常发生概率最高[10],全麻药物对婴幼儿中枢神经系统的毒性作用不可忽视。近年来,包含DXMS在内的糖皮质激素在发挥抗炎作用的同时,也用于治疗由急性炎症引发的脑细胞水肿、死亡、脑脊液渗出等疾病[11-12],DXMS作为临床使用最广泛的长效糖皮质激素,具有组织半衰期长、抗炎作用强等突出优势,其对垂体-肾上腺轴的特异性抑制作用能够显著缩短感觉阻滞起效时间,延长阻滞持续时间和镇痛持续时间,发挥逆转空间记忆障碍、降低术后恶心呕吐等副反应发生率的作用,同时DXMS与脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)、Tau蛋白的异常表达以及神经元细胞病理变化间的关系近年来得到了广泛的关注和研究。本研究立足于DMXS对SEVO致幼鼠记忆损伤作用阐明了DMXS对脑神经元的保护作用及可能的机制,现将结果汇报如下。
Morris水迷宫实验是用于评价和衡量实验动物空间学习能力及记忆能力的最常用方法[13],本研究通过比较各组大鼠定位航行游泳路程可以发现SEVO组大鼠航行距离最长,提示SEVO会诱导幼鼠空间学习和参考记忆力减弱,而这种损伤在同时给予DXMS干预后显著降低,同时观察各组大鼠穿越隐形平台次数和在平台区域滞留时间,结果显示,DXMS可以部分逆转SEVO诱导后大鼠穿越隐形平台次数和平台滞留时间的减少,综上行为学实验结果表明,SEVO+DXMS组大鼠陈述性记忆能力较SEVO组大鼠显著提高,DXMS可显著缓解SEVO诱导幼鼠空间记忆障碍的发生。另一方面,本研究通过在组织水平观察DXMS对SEVO致大鼠海马组织病理变化的影响,结果显示DXMS可显著改善神经细胞形态结构、逆转SEVO所致的细胞空泡、细胞极性减弱及神经元减少等病变,以此提示DXMS对SEVO致新生大鼠记忆障碍的治疗作用可能与改善神经元退行性损伤及细胞凋亡有关,通过检测脑组织内caspase-3蛋白表达结果显示SEVO诱导大鼠海马组织caspase-3大量激活,在SEVO暴露前给予DXMS能显著降低caspase-3的异常表达,抑制神经元凋亡进而减少神经元损伤,与尼氏染色观察到的结果一致。相关研究表明,脑部有氧代谢会产生大量的不饱和脂肪酸,因此机体内氧化应激反应的异常会对发育期大脑形态及结构产生重要影响[14],过量的氧自由基诱导细胞内脂质体和蛋白质的氧化,促使线粒体肿胀并激活释放线粒体通路相关凋亡因子,进一步诱导脑神经元的凋亡。同时有研究表明,DXMS参与介导氧化应激变化[15-17]及相关SIRT1信号变化改善脑组织炎症反应[18-19],对组织损伤发挥保护作用。进而,我们在组织水平检测了幼鼠脑部海马区NO、SOD、MDA水平的变化,结果表明DXMS能有效抑制SEVO+DXMS组大鼠脑组织NO及MDA的积聚,促进抗氧化物酶SOD的增加,提示DXMS可能通过抗氧化作用减轻神经元内脂质过氧化,减轻SEVO所致的神经损伤。与此同时,参与细胞内氧化应激反应调节的重要细胞器线粒体常受到上游PGC-1α、FOXO3α等的调节,并有研究表明,在多发性硬化症小鼠模型中,PGC-1α的高表达能够显著增强线粒体功能,减少氧化应激反应导致的脑损伤进而促进神经细胞的修复[20-21],而SIRT1作为NAD+依赖的组蛋白去乙酰化酶,在多项研究中被证实具有延缓细胞衰老、抵抗氧化应激反应及保护神经等多方面的作用[22],且SIRT1的异常表达常诱导PGC-1α及FOXO3α的表达变化,由此我们进一步检测3组大鼠脑组织中SIRT1、PGC-1α及FOXO3α mRNA的表达变化,结果显示DXMS能够抑制SEVO诱导造成的组织水平SIRT1、PGC-1α及FOXO3α mRNA的表达降低,提示DXMS可能通过促进SIRT1表达,增强神经元细胞内去乙酰化水平进而增强PGC-1α及FOXO3α活性,三者协同作用维护线粒体的正常合成及代谢,抵抗氧化应激反应,最终实现对脑部神经元的保护作用。
综上所述,本研究发现经SEVO多次暴露幼年大鼠会造成大鼠学习及记忆障碍,诱导脑组织病理变化及神经细胞凋亡。而暴露前给予DXMS干预能够通过促进SIRT1及其下游PGC-1α、FOXO3α基因表达,抑制SEVO所致氧化应激反应的加剧,同时抑制促凋亡蛋白caspase-3表达,减轻脑组织神经细胞凋亡,改善大鼠脑组织病理变化及空间记忆障碍。
-
图 1 DXMS对SEVO致大鼠海马组织病理变化和神经元损伤的影响
Figure 1. Effects of DXMS on the SEVO-induced histopathological and neuronal damages of hippocampus in rats
A: HE and Nissl staining images of histopathological and neuronal changes of hippocampus in rats (arrow:Nissl bodies); B:Changes of neuronal cell counts in brain tissues of different groups of rats. *P < 0.05, vs.NC group; #P < 0.05, vs. SEVO group
表 1 引物序列
Table 1 Primer sequence
Gene Sequence (5′→3′) Length/bp GAPDH Forward: CGAGAAATATGACAACTCCCTCA 23 Reverse: CAGCCCCAGCATCAAAGGTAGGA 23 SIRT1 Forward: GTCGTCATAGTATTGGTGGCGAC 23 Reverse: AGGACGGTGTTTGGCAACTAGG 22 PCG-1α Forward: CAGTGTCCCACCAGAAATCC 20 Reverse: GGGAGGCCTATCCGTTACCG 20 FOXO3α Forward: CCATGTCCTAGGGCTGACCGC 21 Reverse: TTGCGATGCGGCCCTAATACCA 22 表 2 DXMS对SEVO麻醉致小鼠学习和记忆障碍的影响
Table 2 Effects of DXMS on learning and memory impairment in SEVO anesthetized mice
Group n Times of across the
stealth platformPlatform area
detention time/sPosition navigation
swimming distance/cmNC 10 3.41±0.82 46.73±7.21 531.22±68.31 SEVO 10 1.27±0.44* 18.96±5.64* 766.49±81.25* SEVO+DXMS 10 2.61±0.90#, * 30.11±8.03#, * 683.50±83.60#, * *P<0.05, vs.NC group;#P<0.05,vs. SEVO group -
[1] KARLSSON V, SPORRE B, ÅGREN J. Transcutaneous pco2 monitoring in newborn infants during general anesthesia is technically feasible. Anesth Analg, 2016, 123(4):1004-1007. DOI: 10.1213/ANE.0000000000001462
[2] SOO K G, YANG M, CHANG C H, et al. Management of cardiac arrest in a parturient with Eisenmenger's syndrome and complete atrioventricular block during Cesarean section: a case report. Korean J Anesthesiol, 2015, 68(6):617-621. DOI: 10.4097/kjae.2015.68.6.617
[3] CHAI J, WU X Y, HAN N, et al. A retrospective study of anesthesia during rigid bronchoscopy for airway foreign body removal in children: propofol and sevoflurane with spontaneous ventilation. Paediatr Anaesth, 2015, 24(10):1031-1036. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25145573
[4] ZHANG S, HU X Y, GUAN W, et al. Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats. PLoS One, 12(4): e0175654[2019-3-18].https://doi.org/10.1371/journal.pone.0175654.
[5] WEN X R, FU Y Y, LIU H Z, et al. Neuroprotection of sevoflurane against ischemia/reperfusion-induced brain injury through inhibiting jnk3/caspase-3 by enhancing akt signaling pathway. Mol Neurobiol, 2016, 53(3):1661-1671. DOI: 10.1007/s12035-015-9111-8
[6] FENG X, YUAN W. Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. Biomed Res Int, 2015, 2015: 627923. http://dx.doi.org/10.1155/2015/627923.
[7] 蓝明平, 蒋莉.地塞米松治疗儿童化脓性脑膜炎研究进展.儿科药学杂志, 2015(8):51-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ekyx201508020 [8] ARSLAN M, ISIK B, KAVUTCU M, et al. Oxidative stress and antioxidant activity of female rat liver tissue after sevoflurane anaesthesia: Young versus old. Bratisl Lek Listy, 2012, 113(12):702-706. https://www.onacademic.com/detail/journal_1000041702838899_d444.html
[9] ARSLAN M, OZKOSE Z, AKYOL G, et al. The age- and gender-dependent effects of desflurane and sevoflurane on rat liver. Exp Toxicol Pathol, 2010, 62(1):35-43. DOI: 10.1016/j.etp.2008.12.011
[10] DIMAGGIO C, SUN L S, LI G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg, 2011, 113(5):1143-1151. DOI: 10.1213/ANE.0b013e3182147f42
[11] KALAFATAKIS K, RUSSELL G M, ZARROS A, et al. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics. Neurosci Biobehav Rev, 2016, 61:12-25. DOI: 10.1016/j.neubiorev.2015.11.009
[12] IQBAL M, BAELLO S, JAVAM M, et al. Regulation of multidrug resistance p-glycoprotein in the developing blood-brain barrier: interplay between glucocorticoids and cytokines. J Neuroendocrinol, 2015, 28(3): 12360. https://doi.org/10.1111/jne.12360.
[13] D'HOOGE R, DE DEYN PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev, 2001, 36 (1):60-90. DOI: 10.1016/S0165-0173(01)00067-4
[14] GHOSH A, HIGHTON D, KOLYVA C, et al. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab, 2017, 37(8):2910-2920. DOI: 10.1177/0271678X16679171
[15] YAZICI T, KOÇER G, NAZIROǦLU M, et al. Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment. Biol Trace Elem Res, 2018, 184(2):358-368. DOI: 10.1007/s12011-017-1187-8
[16] HE Y, ZHANG L, ZHU Z, et al. Blockade of cyclophilin D rescues dexamethasone-induced oxidative stress in gingival tissue. PLoS One, 2017, 12(4): e0175616[2019-07-11].http://doi.org/10.1371/journal.pone.0173270.
[17] 陈涛, 刘先保, 陈郡兴, 等.地塞米松对大鼠产后出血致多器官功能障碍综合征氧化应激和炎症因子释放的影响.中华产科急救电子杂志, 2013, 2(3):202-206. DOI: 10.3877/cma.j.issn.2095-3259.2013.03.013 [18] 李传文, 张嵘, 侯亮, 等. SIRT1/NF-kB通路参与白藜芦醇改善大鼠脑缺血再灌注损伤炎性反应.安徽医科大学学报, 2018, 53(1):6-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahykdxxb201801002 [19] LEE H, KIM M, PARK Y H, et al. Dexamethasone downregulates SIRT1 and IL6 and upregulates EDN1 genes in stem cells derived from gingivae via the AGE/RAGE pathway. Biotechnol Lett, 2018, 40(3): 509-519. DOI: 10.1007/s10529-017-2493-0
[20] VELLINGA T T, BOROVSKI T, DE BOER V C, et al. SIRT1/PGC1α dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res, 2015, 21(12):2870-2879. DOI: 10.1158/1078-0432.CCR-14-2290
[21] KHAN S A, SATHYANARAYAN A, MASHEK M T, et al. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1α/PPAR-α signaling. Diabetes, 2015, 64(2):418-426. DOI: 10.2337/db14-0325
[22] TSAI M S, LEE P H, SUN C K, et al. Nerve growth factor upregulates sirtuin 1 expression in cholestasis: a potential therapeutic target. Exp Mol Med, 2018, 50(1): e426. https://www.nature.com/articles/emm2017235. doi: 10.1038/emm.2017.235.