-
摘要:目的 了解我国老年人肥胖和抑郁的关系,并探究不同性别之间是否存在差异。方法 数据来源为2015年中国健康与养老全国追踪调查(China Health and Retirement Longitudinal Study,CHARLS)数据。根据抑郁状态将受访对象进行分组,采用卡方检验比较不同性别和抑郁状况老年人之间的差异;利用二分类logistic回归分析抑郁和肥胖以及其他社会学因素的关系。结果 有效样本4 019例,其中男性2 109例(52.48%),女性1 910例(47.52%),均为60岁及以上老年人。中心性肥胖474例(11.79%), 腹型肥胖2 418例(60.16%)。男女之间中心性肥胖以及腹型肥胖等因素差异有统计学意义(P均<0.001)。1 304例患抑郁症,占32.45%,其中男性539例(41.33%),女性765例(58.67%)。性别、中心性肥胖以及腹型肥胖因素在患抑郁症方面差异有统计学意义(P均<0.001)。单因素分析发现,女性、离异/丧偶/未婚、农村、患有慢性病和身体功能损失都是发生抑郁的危险因素。多因素logistic回归分析发现,总体而言,调整混杂因素后,中心性肥胖人群和腹型肥胖人群患抑郁症的可能性均更小;进行性别分层后,中心性肥胖和腹型肥胖仍与抑郁呈负相关。结论 无论男女,中心性肥胖和腹型肥胖人群患抑郁的可能性更小。Abstract:Objective To understand the relationship between obesity and depression in the elderly in China, and to explore whether there are differences between the genders.Methods The data were collected from the 2015 China Health and Retirement National Investigation (China Health and Retirement Longitudinal Study, CHARLS). The respondents were grouped according to depressive status. The difference of depressive status between the elderly male and female groups was examined by Chi-square test. The relationship between depression, obesity and the other sociological factors was analyzed by binary logistic regression.Results There were 4 019 valid cases, including 2 109 males (52.48%) and 1 910 females (47.52%). All the respondents were aged 60 years and over. There were 474 cases of central obesity (11.79%) and 2 418 cases of abdominal obesity (60.16%). There were significant differences in central obesity and abdominal obesity between the elderly male and female groups (P < 0.001). 1 304 cases suffered from depression, accounting for 32.45%, of which 539 cases were male (41.33%) and 765 cases were female (58.67%). Different groups of gender, central obesity and abdominal obesity had significant differences in depressive status (P < 0.001). The results of univariate analysis indicated that the characteristics of female, divorced/widowed/unmarried, in rural areas, having chronic diseases and functional loss were the risk factors for depression. The results of multivariate logistic regression analysis indicated that, in terms of the total sample, after adjustment for the confounding factors, both central obesity and abdominal obesity groups were less likely to suffer from depression. After stratified by gender, both central obesity and abdominal obesity were negatively correlated with depression.Conclusion The elderly with central obesity or abdominal obesity are less likely to suffer from depression, regardless of gender.
-
Keywords:
- Obesity /
- The elderly /
- CHARLS /
- Depressive symptoms
-
抑郁已经成为一个重大的世界公共卫生问题[1],抑郁症是全球疾病的主要原因,占疾病调整寿命年的近一半[2]。一项有关抑郁症影响的综述研究发现,抑郁患者的功能损失、生活质量下降的影响等于或大于糖尿病、高血压和心脏病等其他常见慢性疾病,而抑郁症的治疗有助于包括精神、情绪、社会功能以及健康认知、生活质量在内的功能状态的全面改善[3]。世界卫生组织预测抑郁将继续成为致残的主要原因,仅次于心血管疾病的影响[4]。抑郁症也是我国常见的高发病率的心理疾病[5]。
肥胖也是一个全球公共卫生问题,超重和肥胖被证明是心血管疾病、2型糖尿病和若干癌症的重要危险因素[6]。在中国,肥胖率的水平和流行趋势已经成为我国主要的公共卫生问题[7],肥胖与预期寿命缩短、认知功能障碍和生活质量下降高度相关[8],一些研究报道,肥胖患者比正常体质量患者更需要医疗保健(包括药物使用和医院护理)[6]。
肥胖和抑郁的关系已有报道[5, 9],但结论仍有争议。有研究通过meta分析发现,基线肥胖可以预测随访期间抑郁的发作,但在其他研究中并无有力的证据支持这一论断[10-11]。有研究发现,体质量过轻和肥胖对抑郁症均有显著的影响,但其他研究表明,抑郁症状只与体质量过轻或肥胖有关,而非与两者均有关联[12-13]。因此,本研究拟分析我国60岁及以上老年人抑郁和肥胖的关系,并且进一步探究这一关系是否存在性别差异,以期促进对于肥胖和抑郁关系的理解,并且促进对肥胖和抑郁问题的适当管理。
1. 资料和方法
1.1 数据来源
本研究数据来源于北京大学组织的2015年中国健康与养老追踪调查(China Health and Retirement Longitudinal Survey, CHARLS)数据,该调查对象为45岁及以上的中老年人,全国基线调查开始于2011年,每两年追踪一次,是我国比较权威的有关老年人健康状况方面的微观调查数据[14]。根据本研究需要,选取2015年60岁及以上老年人抑郁相关调查数据进行分析,剔除没有身高、体质量、腰围测量值的老年人与缺失值较多的样本,共得到有效样本4 019例。
1.2 研究内容及相关定义
CHARLS项目采用流行病学调查用抑郁量表(CES-D)测量,研究因变量为抑郁状况[15],CES-D量表选项由4级构成:“很少或者根本没有=0”、“不太多=1”、“有时或者说有一半的时间=2”、“大多数时间=3”,综合评分范围为0~30分,本研究定义抑郁得分≥10分为患抑郁症,<10分为无抑郁,在多因素分析中0=未抑郁,1=抑郁[16]。主要研究自变量为腹型肥胖和中心性肥胖。根据受访者的腰围判断是否为腹型肥胖,本研究定义男性腰围≥85 cm、女性腰围≥80 cm为腹型肥胖[17];根据受访者的身高、体质量计算体质量指数(BMI)值,本研究定义体质量状态分为超轻(BMI<18.5 kg/m2)、正常(BMI 18.5~<24 kg/m2)、超重(BMI 24 ~28 kg/m2)、中心性肥胖(BMI≥28 kg/m2)[18]。其他研究变量包括:社会人口学特征(年龄、性别、婚姻状况)、社会经济状况(受教育程度、户口类型)、其他健康相关因素(吸烟状况、饮酒状况、患慢性病情况、功能损失情况),其中功能损失情况通过老年人的日常生活自理能力量表(ADL)测量,ADL量表的各个选项分为4级:“0分=没有困难”、“1分=有困难但仍可以完成”、“2分=有困难、但需要帮助”、“3分=无法完成”,综合评分范围为6~23分,本研究定义ADL综合得分>6分为身体功能有损失,≤6分为身体功能无损失[19]。
1.3 统计学方法
组间比较采用卡方检验或t检验,多因素分析采用二分类logistic回归模型。α=0.05。
2. 结果
2.1 调查对象基本情况
见表 1。调查对象4 019例,男性2 109例(52.48%)、女性1 910例(47.52%)。中心性肥胖474例(11.79%), 男性189例(8.97%),女性285例(14.92%)。腹型肥胖2 418例(60.16%),男性1 078例(51.11%),女性523例(27.38%)。男女间婚姻状况、文化程度、城乡户口类型、吸烟状况、饮酒状况、身体功能损失、中心性肥胖(χ趋势2=37.455,P<0.001)以及腹型肥胖等因素差异有统计学意义(P均<0.001)。
表 1 调查对象基本情况Table 1. The baseline characteristics of the respondentsCharacteristic Total (n=4 019) Male (n=2 109) Female (n=1 910) χ2 P Age/case (%) 0.012 0.914 60-74 yr. 3 383 (84.18) 1 774 (84.12) 1 609 (84.24) ≥75 yr. 636 (15.82) 335 (15.88) 301 (15.76) Martial status/case (%) 48.599 < 0.001 Married 3 356 (83.50) 1 843 (87.39) 1 513 (79.21) Unmarried 663 (16.50) 266 (12.61) 397 (20.79) Education/case (%) 610.936 < 0.001 Illiterate 1 236 (30.75) 303 (14.37) 933 (48.85) Primary school 1 836 (45.68) 1 102 (52.25) 734 (38.43) Secondary school and above 947 (23.56) 704 (33.38) 243 (12.72) Hukou/case (%) 24.930 < 0.001 Rural 3 298 (82.06) 1 670 (79.18) 1 628 (85.24) Urban 721 (17.94) 439 (20.82) 282 (14.76) Smoking status/case (%) 1 955.171 < 0.001 Current smoking 1 248 (31.05) 1 130 (53.58) 118 (6.18) Never smoking 2 188 (54.44) 451 (21.38) 1 737 (90.94) Former smoking 583 (14.51) 528 (25.04) 55 (2.88) Alcohol drinking/case (%) 804.933 < 0.001 One month more than once 1 168 (29.06) 995 (47.18) 173 (9.06) One month less than once 313 (7.79) 205 (9.72) 108 (5.65) Never drinking 2 538 (63.15) 909 (43.10) 1 629 (85.29) Chronic disease/case (%) 3.455 0.063 None 3 695 (91.94) 1 955 (92.70) 1 740 (91.10) 1 kind and above 324 (8.06) 154 (7.30) 170 (8.90) Functional disability/case (%) 176.453 < 0.001 Yes 2 722 (67.73) 1 625 (77.05) 1 097 (57.43) No 1 297 (32.27) 484 (22.95) 813 (42.57) BMI status/case (%) 64.119 < 0.001 Underweight 279 (6.95) 136 (6.45) 143 (7.49) Normal 1 991 (49.54) 1 159 (54.95) 832 (43.56) Overweight 1 275 (31.72) 625 (29.63) 650 (34.03) Central obesity 474 (11.79) 189 (8.97) 285 (14.92) Abdominal obesity/case (%) 235.533 < 0.001 Yes 2 418 (60.16) 1 078 (51.11) 523 (27.38) No 1 601 (39.84) 1 031 (48.89) 1 387 (72.62) 2.2 不同抑郁情况调查对象单因素分析
4 019例调查对象中,1 304例患抑郁,占比为32.45%。其中男性539例(41.33%),女性765例(58.67%)。总体而言,除年龄外,性别、婚姻状况、文化程度、户口类型、吸烟状况、饮酒状况、患慢性病情况、功能损失、中心性肥胖以及腹型肥胖因素在患抑郁方面差异有统计学意义(P均<0.001)。见表 2。
表 2 不同抑郁情况调查对象单因素分析Table 2. The univariate analysis of the respondents with different depressive statusFactor Total (n=4 019) Depression (n=1 304) Non-depression (n=2 715) χ2 P Gender/case (%) 96.079 < 0.001 Male 2 109 (52.48) 539 (41.33) 1 570 (57.83) Female 1 910 (47.52) 765 (58.67) 1 145 (42.17) Age/case (%) 1.155 0.289 60-74 yr. 3 383 (84.18) 1 086 (83.28) 2 297 (84.60) ≥75 yr. 636 (15.82) 218 (16.72) 418 (15.40) Martial status/case (%) 34.693 < 0.001 Married 3 356 (83.50) 1 024 (78.53) 2 332 (85.89) Unmarried 663 (16.50) 280 (21.47) 383 (14.11) Education/case (%) 71.978 < 0.001 Illiterate 1 236 (30.75) 483 (37.04) 753 (27.73) Primary school 1 836 (45.68) 612 (46.93) 1 224 (45.08) Secondary school and above 947 (23.56) 209 (16.03) 738 (27.18) Hukou/case (%) 62.37 < 0.001 Rural 3 298 (82.06) 1 160 (88.96) 2 138 (78.75) Urban 721 (17.94) 144 (11.04) 577 (21.25) Smoking status/case (%) 25.224 < 0.001 Current smoking 1 248 (31.05) 367 (28.14) 881 (32.45) Never smoking 2 188 (54.44) 782 (59.97) 1 406 (51.79) Former smoking 583 (14.51) 155 (11.89) 428 (15.76) Alcohol drinking/case (%) 33.030 < 0.001 One month more than once 1 168 (29.06) 302 (23.16) 866 (31.90) One month less than once 313 (7.79) 105 (8.05) 208 (7.66) Never drinking 2 538 (63.15) 897 (68.79) 1 641 (60.44) Chronic disease/case (%) 14.601 < 0.001 None 3 695 (91.94) 1 168 (89.57) 2 527 (93.08) 1 kind and above 324 (8.06) 136 (10.43) 188 (6.92) Functional disability/case (%) 317.318 < 0.001 Yes 1 265 (31.48) 636 (48.77) 629 (23.17) No 2 754 (65.82) 668 (51.23) 2 086 (76.83) BMI status/case (%) 34.649 < 0.001 Underweight 279 (6.94) 127 (9.74) 152 (5.60) Normal 1 991 (49.54) 670 (51.38) 1 321 (48.66) Overweight 1 275 (31.72) 382 (29.29) 893 (32.89) Central obesity 474 (11.79) 125 (9.59) 349 (12.85) Abdominal obesity/case (%) 10.260 < 0.001 Yes 2 418 (60.16) 738 (56.60) 1 680 (61.88) No 1 601 (39.84) 566 (43.40) 1 035 (38.12) 2.3 不同性别调查者患抑郁症的多因素分析
见表 3。总体而言,女性〔比值比(OR=1.851,95%可信区间(CI):1.481~2.313〕、离异/丧偶/未婚人群(OR=1.389,95%CI:1.149~1.679)、患有1种及以上慢性病人群(OR=1.472,95%CI:1.147~1.887)、身体功能损失人群(OR=3.044,95%CI:2.613~3.547)患抑郁的可能更大。而城市人群(OR=0.624,95%CI:0.502~0.775)、中心性肥胖(OR=0.668 95%CI:0.514~0.869)、腹型肥胖(OR=0.857,95%CI:0.711~0.933)患抑郁症的可能性更小。
表 3 不同性别调查者患抑郁症的多因素分析Table 3. Binary logistic regression models of the risk of depression by genderFactor OR (95%CI) Total Male Female Sex Male 1.000 - - Female 1.851 (1.481-2.313)*** - - Age 60-74 yr. 1.000 1.000 1.000 ≥75 yr. 0.772 (0.628-0.108) 0.946 (0.706-1.268) 0.631 (0.473-1.442) Martial status Married 1.000 1.000 1.000 Unmarried 1.389 (1.149-1.679)** 1.344 (0.996-1.814) 1.456 (1.138-1.864)** Education Illiterate 1.000 1.000 1.000 Primary school 1.240 (0.944-1.473) 1.283 (0.947-1.739) 1.214 (0.982-1.501) Secondary school and above 1.032 (0.818-1.302) 1.157 (0.817-1.638) 0.879 (0.612-1.264) Hukou Rural 1.000 1.000 1.000 Urban 0.624 (0.502-0.775)*** 0.552 (0.405-0.754)*** 0.712 (0.519-0.975)* Smoking status Current smoking 1.000 1.000 1.000 Never smoking 0.810 (0.651-1.008) 0.771 (0.583-1.019) 0.824 (0.555-1.224) Former smoking 0.918 (0.726-1.161) 0.902 (0.699-1.166) 0.940 (0.479-1.847) Alcohol drinking One month more than once 1.000 1.000 1.000 One month less than once 1.320 (0.992-1.756) 1.319 (0.923-1.885) 1.158 (0.695-1.930) Never drinking 1.143 (0.953-1.371) 1.268 (1.015-1.583)* 0.890 (0.638-1.242) Chronic disease None 1.000 1.000 1.000 1 kind and above 1.472 (1.147-1.887)*** 1.975 (1.365-2.857)*** 1.158 (1.029-1.618)* Functional disability No 1.000 1.000 1.000 Yes 3.044 (2.613-3.547)*** 3.273 (2.599-4.123)*** 2.886 (2.349-3.546)*** BMI status Normal 1.000 1.000 1.000 Central obesity 0.668 (0.514-0.869)** 0.547 (0.335-0.895)* 0.722 (0.526-0.991)* Abdominal obesity No 1.000 1.000 1.000 Yes 0.857 (0.711-0.933)* 0.757 (0.577-0.995)* 0.956 (0.733-0.997)* OR: Odds ratio; CI: Confidence interval; *P < 0.05, **P < 0.01, ***P < 0.001 就性别差异而言,户口类型、患慢病情况、身体功能损失、中心性肥胖(χ2趋势=28.738,P<0.001)、腹型肥胖对抑郁的影响,男女之间分布一致。而在女性中,离异/丧偶/未婚人群患抑郁的可能性较已婚/同居人群更大,而婚姻状况对男性患抑郁的影响无统计学意义。
年龄、文化程度、吸烟状况、饮酒状况对患抑郁的影响,差异均无统计学意义。除饮酒状况以外,年龄、文化程度、吸烟状况不同性别间分布一致。
3. 讨论
总体而言,本研究发现在调整性别、年龄、婚姻状况、文化程度、户口类型、吸烟状况、饮酒状况、患慢病情况、身体功能损失等混杂因素后,无论中心性肥胖还是腹型肥胖,随着BMI值和腰围的增加,抑郁的可能性减小,即抑郁的发生和肥胖呈负相关。有研究[20-21]发现抑郁和肥胖呈现相反关系,与本研究发现一致:KIM等[20]通过研究韩国女性老年人发现,在控制了可能的混杂因素后,与正常体质量老年人相比,肥胖老年人患抑郁的可能性降低40%;同时,有学者通过调查2 245例50~89岁的生活在美国的老年人发现,肥胖和抑郁亦呈相反的关系[21]。
“肥胖悖论”可以解释肥胖和抑郁症之间的相反关系。研究发现,食物缺乏会通过限制饮食而导致减肥者抑郁,有时,这可能是一种保护机制,可以防治周期性暴饮暴食的肥胖者经历和表现出焦虑和抑郁。从生物学角度看,神经肽Y(NPY)可以解释体质量增加和抑郁症状减轻之间的联系。NPY是一种广泛分布于中枢神经系统的36个氨基酸肽,能增加食欲。强迫游泳试验是一种急性动物模型,广泛用于筛选潜在的抗抑郁药物。研究结果表明,NPY处理能增加动物游泳次数,减少强迫游泳试验的不动度,说明NPY具有抗抑郁作用,同时具有增加食欲的作用[22]。
同时本研究还发现其他因素对老年人抑郁有一定程度的影响。相比男性,女性更容易发生抑郁,性别的差异可能是因为女性与男性相比对于情感更加细腻和敏感,更容易对外界的变化产生情绪波动(如邻里关系的协调等),女性对外部刺激的关注程度远远超过男性。与已婚/同居人群相比,离异/丧偶/未婚的人群发生抑郁的可能性更大,这可能是因为离异、丧偶等作为一种恶性生活事件,可以导致严重的情绪障碍,而这种心理创伤可能会进一步导致神经功能失调等。相比农村人群,城市人群患抑郁的可能性较小,我国社会典型的二元化结构导致农村地区社会结构性资源匮乏,从而导致农村地区居民更容易产生抑郁。与未患慢病人群相比,患有1种及以上慢病人群的老年人抑郁的可能性更大,慢性病本身就具有病程长、反复发作且伴随多种疾病等特点,慢性病会导致患者不同程度的生命质量受损,加大经济负担,增加抑郁风险。身体功能损失的老年人抑郁的可能性更大,身体功能损失的老年人活动能力受限,无法正常的进行日常生活造成的心理影响增加患抑郁的可能。
本研究使用1年的横断面数据进行研究,因而在反映关联性时存在一定的局限;同时抑郁量表是对过去1周内自我报告的抑郁症状数量进行检查,这可能导致回忆偏倚;因数据限制,本研究没有将抑郁的严重程度纳入,也可能会导致偏倚的。
综上所述,本研究表明,无论男女,肥胖和抑郁均呈相反关系,即随着肥胖的增加,其患抑郁的可能性减小。这也证明“肥胖悖论”这一假说也适用于我国老年人群。这一发现也提示我们正确认识肥胖和抑郁之间的关系,相关部门应该密切关注体质量减轻者的情绪状态,特别是快速体质量减轻者心理状态的变化。
-
表 1 调查对象基本情况
Table 1 The baseline characteristics of the respondents
Characteristic Total (n=4 019) Male (n=2 109) Female (n=1 910) χ2 P Age/case (%) 0.012 0.914 60-74 yr. 3 383 (84.18) 1 774 (84.12) 1 609 (84.24) ≥75 yr. 636 (15.82) 335 (15.88) 301 (15.76) Martial status/case (%) 48.599 < 0.001 Married 3 356 (83.50) 1 843 (87.39) 1 513 (79.21) Unmarried 663 (16.50) 266 (12.61) 397 (20.79) Education/case (%) 610.936 < 0.001 Illiterate 1 236 (30.75) 303 (14.37) 933 (48.85) Primary school 1 836 (45.68) 1 102 (52.25) 734 (38.43) Secondary school and above 947 (23.56) 704 (33.38) 243 (12.72) Hukou/case (%) 24.930 < 0.001 Rural 3 298 (82.06) 1 670 (79.18) 1 628 (85.24) Urban 721 (17.94) 439 (20.82) 282 (14.76) Smoking status/case (%) 1 955.171 < 0.001 Current smoking 1 248 (31.05) 1 130 (53.58) 118 (6.18) Never smoking 2 188 (54.44) 451 (21.38) 1 737 (90.94) Former smoking 583 (14.51) 528 (25.04) 55 (2.88) Alcohol drinking/case (%) 804.933 < 0.001 One month more than once 1 168 (29.06) 995 (47.18) 173 (9.06) One month less than once 313 (7.79) 205 (9.72) 108 (5.65) Never drinking 2 538 (63.15) 909 (43.10) 1 629 (85.29) Chronic disease/case (%) 3.455 0.063 None 3 695 (91.94) 1 955 (92.70) 1 740 (91.10) 1 kind and above 324 (8.06) 154 (7.30) 170 (8.90) Functional disability/case (%) 176.453 < 0.001 Yes 2 722 (67.73) 1 625 (77.05) 1 097 (57.43) No 1 297 (32.27) 484 (22.95) 813 (42.57) BMI status/case (%) 64.119 < 0.001 Underweight 279 (6.95) 136 (6.45) 143 (7.49) Normal 1 991 (49.54) 1 159 (54.95) 832 (43.56) Overweight 1 275 (31.72) 625 (29.63) 650 (34.03) Central obesity 474 (11.79) 189 (8.97) 285 (14.92) Abdominal obesity/case (%) 235.533 < 0.001 Yes 2 418 (60.16) 1 078 (51.11) 523 (27.38) No 1 601 (39.84) 1 031 (48.89) 1 387 (72.62) 表 2 不同抑郁情况调查对象单因素分析
Table 2 The univariate analysis of the respondents with different depressive status
Factor Total (n=4 019) Depression (n=1 304) Non-depression (n=2 715) χ2 P Gender/case (%) 96.079 < 0.001 Male 2 109 (52.48) 539 (41.33) 1 570 (57.83) Female 1 910 (47.52) 765 (58.67) 1 145 (42.17) Age/case (%) 1.155 0.289 60-74 yr. 3 383 (84.18) 1 086 (83.28) 2 297 (84.60) ≥75 yr. 636 (15.82) 218 (16.72) 418 (15.40) Martial status/case (%) 34.693 < 0.001 Married 3 356 (83.50) 1 024 (78.53) 2 332 (85.89) Unmarried 663 (16.50) 280 (21.47) 383 (14.11) Education/case (%) 71.978 < 0.001 Illiterate 1 236 (30.75) 483 (37.04) 753 (27.73) Primary school 1 836 (45.68) 612 (46.93) 1 224 (45.08) Secondary school and above 947 (23.56) 209 (16.03) 738 (27.18) Hukou/case (%) 62.37 < 0.001 Rural 3 298 (82.06) 1 160 (88.96) 2 138 (78.75) Urban 721 (17.94) 144 (11.04) 577 (21.25) Smoking status/case (%) 25.224 < 0.001 Current smoking 1 248 (31.05) 367 (28.14) 881 (32.45) Never smoking 2 188 (54.44) 782 (59.97) 1 406 (51.79) Former smoking 583 (14.51) 155 (11.89) 428 (15.76) Alcohol drinking/case (%) 33.030 < 0.001 One month more than once 1 168 (29.06) 302 (23.16) 866 (31.90) One month less than once 313 (7.79) 105 (8.05) 208 (7.66) Never drinking 2 538 (63.15) 897 (68.79) 1 641 (60.44) Chronic disease/case (%) 14.601 < 0.001 None 3 695 (91.94) 1 168 (89.57) 2 527 (93.08) 1 kind and above 324 (8.06) 136 (10.43) 188 (6.92) Functional disability/case (%) 317.318 < 0.001 Yes 1 265 (31.48) 636 (48.77) 629 (23.17) No 2 754 (65.82) 668 (51.23) 2 086 (76.83) BMI status/case (%) 34.649 < 0.001 Underweight 279 (6.94) 127 (9.74) 152 (5.60) Normal 1 991 (49.54) 670 (51.38) 1 321 (48.66) Overweight 1 275 (31.72) 382 (29.29) 893 (32.89) Central obesity 474 (11.79) 125 (9.59) 349 (12.85) Abdominal obesity/case (%) 10.260 < 0.001 Yes 2 418 (60.16) 738 (56.60) 1 680 (61.88) No 1 601 (39.84) 566 (43.40) 1 035 (38.12) 表 3 不同性别调查者患抑郁症的多因素分析
Table 3 Binary logistic regression models of the risk of depression by gender
Factor OR (95%CI) Total Male Female Sex Male 1.000 - - Female 1.851 (1.481-2.313)*** - - Age 60-74 yr. 1.000 1.000 1.000 ≥75 yr. 0.772 (0.628-0.108) 0.946 (0.706-1.268) 0.631 (0.473-1.442) Martial status Married 1.000 1.000 1.000 Unmarried 1.389 (1.149-1.679)** 1.344 (0.996-1.814) 1.456 (1.138-1.864)** Education Illiterate 1.000 1.000 1.000 Primary school 1.240 (0.944-1.473) 1.283 (0.947-1.739) 1.214 (0.982-1.501) Secondary school and above 1.032 (0.818-1.302) 1.157 (0.817-1.638) 0.879 (0.612-1.264) Hukou Rural 1.000 1.000 1.000 Urban 0.624 (0.502-0.775)*** 0.552 (0.405-0.754)*** 0.712 (0.519-0.975)* Smoking status Current smoking 1.000 1.000 1.000 Never smoking 0.810 (0.651-1.008) 0.771 (0.583-1.019) 0.824 (0.555-1.224) Former smoking 0.918 (0.726-1.161) 0.902 (0.699-1.166) 0.940 (0.479-1.847) Alcohol drinking One month more than once 1.000 1.000 1.000 One month less than once 1.320 (0.992-1.756) 1.319 (0.923-1.885) 1.158 (0.695-1.930) Never drinking 1.143 (0.953-1.371) 1.268 (1.015-1.583)* 0.890 (0.638-1.242) Chronic disease None 1.000 1.000 1.000 1 kind and above 1.472 (1.147-1.887)*** 1.975 (1.365-2.857)*** 1.158 (1.029-1.618)* Functional disability No 1.000 1.000 1.000 Yes 3.044 (2.613-3.547)*** 3.273 (2.599-4.123)*** 2.886 (2.349-3.546)*** BMI status Normal 1.000 1.000 1.000 Central obesity 0.668 (0.514-0.869)** 0.547 (0.335-0.895)* 0.722 (0.526-0.991)* Abdominal obesity No 1.000 1.000 1.000 Yes 0.857 (0.711-0.933)* 0.757 (0.577-0.995)* 0.956 (0.733-0.997)* OR: Odds ratio; CI: Confidence interval; *P < 0.05, **P < 0.01, ***P < 0.001 -
[1] LEVIS B, BENEDETTI A, THOMBS B D.Accuracy of Patient Health Questionnaire-9(PHQ-9) for screening to detect major depression: individual participant data meta-analysis. BMJ, 2019, 365: l147[2019-06-07]. https://doi.org/10.1136/bmj.l1476.
[2] LEMOULT J, GOTLIB I H.Depression: a cognitive perspective. Clin Psychol Rev, 2019, 69:51-66. DOI: 10.1016/j.cpr.2018.06.008
[3] SIMON G E.Social and economic burden of mood disorders.Biol Psychiatry, 2003, 54(3):208-215. DOI: 10.1016/S0006-3223(03)00420-7
[4] MICHAUD C M, MURRAY C J, BLOOM B R.Burden of disease-implications for future research.JAMA, 2001, 285(5):535-539. DOI: 10.1001/jama.285.5.535
[5] ZHOU X, LI J, GU W, et al.Prevalence and associated factors of anxiety and depression among patients with chronic respiratory diseases in eight general hospitals in Jiangsu Province of China: a cross-sectional study. Psychiatry Res, 2017, 251:48-53. DOI: 10.1016/j.psychres.2017.01.070
[6] SWINBURN B A, KRAAK V I, ALLENDER S, et al.The global syndemic of obesity, undernutrition, and climate change: the lancet commission report. Lancet, 2019, 393(10173):791-846. DOI: 10.1016/S0140-6736(18)32822-8
[7] PAGAN R, DE HARO C O, SANCHEZ C R.Obesity, job satisfaction and disability at older ages in Europe. Econ Hum Biol, 2016, 20:42-54. DOI: 10.1016/j.ehb.2015.10.001
[8] DAHANY M M, DRAME M, MAHMOUDI R, et al.Factors associated with successful aging in persons aged 65 to 75 years. European Geriatric Med, 2014, 5(6):365-370. DOI: 10.1016/j.eurger.2014.09.005
[9] LAZAREVICH I, IRIGOYEN C M, VELAZQUEZ-ALVA M, et al.Relationship among obesity, depression, and emotional eating in young adults. Appetite, 2016, 107:639-644. DOI: 10.1016/j.appet.2016.09.011
[10] LUPPINO F S, DE WIT L M, BOUVY P F, et al.Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies.Arch Gen Psychiatry, 2010, 67(3):220-229. DOI: 10.1001/archgenpsychiatry.2010.2
[11] XIANG X, AN R.Obesity and onset of depression among U.S. middle-aged and older adults. J Psychosom Res, 2015, 78(3):242-248. DOI: 10.1016/j.jpsychores.2014.12.008
[12] KIM J, NOH J W, PARK J, et al.Body mass index and depressive symptoms in older adults: a cross-lagged panel analysis.PLoS One, 2014, 9(12): e114891[2019-01-13]. https://doi.org/10.1371/journal.pone.0114891.
[13] DE WIT L M, VAN STRATEN A, VAN HERTEN M, et al.Depression and body mass index, a u-shaped association. BMC Public Health, 2009, 9: 14[2019-01-13]. https://doi.org/10.1186/1471-2458-9-14.
[14] ZHAO Y, HU Y, SMITH J P, et al.Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS).Int J Epidemiol, 2014, 43(1):61-68. DOI: 10.1093/ije/dys203
[15] ANDRESEN E M, MALMGREN J A, CARTER W B, et al.Screening for depression in well older adults: evaluation of a short form of the CES-D(Center for Epidemiologic Studies Depression Scale). Am J Prev Med, 1994, 10(2):77-84. DOI: 10.1016/S0749-3797(18)30622-6
[16] BOEY K W.Cross-validation of a short form of the CES-D in Chinese elderly.Int J Geriatr Psychiatry, 1999, 14(8):608-617. DOI: 10.1002/(SICI)1099-1166(199908)14:8<608::AID-GPS991>3.0.CO;2-Z
[17] 罗会强, 曹裴娅, 左宗力, 等.我国老年人腹型肥胖和睡眠时长关系研究.四川大学学报(医学版), 2017, 48(4):584-588. http://ykxb.scu.edu.cn/article/id/8042bcd4-047b-4fe5-aca6-fdf555667391 [18] 中国肥胖问题工作组.中国成人超重与肥胖症预防与控制指南(节录).营养学报, 2004, 26(1):1-4. http://d.old.wanfangdata.com.cn/Periodical/yingyxb200401001 [19] 仲亚琴, 高月霞, 王健.中国农村老年人自评健康和日常活动能力的性别差异.医学与哲学, 2014, 35(3):37-39. http://d.old.wanfangdata.com.cn/Periodical/yxyzx201403012 [20] KIM E, SONG J H, HWANG J Y, et al.Obesity and depressive symptoms in elderly Koreans: evidence for the "jolly fat" hypothesis from the Ansan Geriatric(AGE) Study. Arch Gerontol Geriatr, 2010, 51(2):231-234. DOI: 10.1016/j.archger.2009.10.014
[21] PALINKAS L A, WINGARD D L, BARRETT-CONNOR E.Depressive symptoms in overweight and obese older adults: a test of the "jolly fat" hypothesis. J Psychosom Res, 1996, 40(1):59-66. DOI: 10.1016/0022-3999(95)00542-0
[22] STOGNER K A, HOLMES P V.Neuropeptide-Y exerts antidepressant-like effects in the forced swim test in rats. Eur J Pharmacol, 2000, 387(2):R9-R10. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM10650166
计量
- 文章访问数: 2365
- HTML全文浏览量: 949
- PDF下载量: 50