欢迎来到《四川大学学报(医学版)》 2025年5月3日 星期六

DNA损伤修复基因XRCC4、RAD51单核苷酸多态性与中国地区食管癌易感相关性研究

范雪娇, 任朋亮, 卢钟娇, 赵书, 杨晓龙, 刘戟

范雪娇, 任朋亮, 卢钟娇, 等. DNA损伤修复基因XRCC4、RAD51单核苷酸多态性与中国地区食管癌易感相关性研究[J]. 四川大学学报(医学版), 2013, 44(4): 568-572.
引用本文: 范雪娇, 任朋亮, 卢钟娇, 等. DNA损伤修复基因XRCC4、RAD51单核苷酸多态性与中国地区食管癌易感相关性研究[J]. 四川大学学报(医学版), 2013, 44(4): 568-572.
FAN Xue-jiao, REN Peng-liang, LU Zhong-jiao, et al. The Study of Esophageal Cancer Risk Associated with Polymorphisms of DNA Damage Repair Genes XRCC4 and RAD51[J]. Journal of Sichuan University (Medical Sciences), 2013, 44(4): 568-572.
Citation: FAN Xue-jiao, REN Peng-liang, LU Zhong-jiao, et al. The Study of Esophageal Cancer Risk Associated with Polymorphisms of DNA Damage Repair Genes XRCC4 and RAD51[J]. Journal of Sichuan University (Medical Sciences), 2013, 44(4): 568-572.

栏目: 论著

DNA损伤修复基因XRCC4、RAD51单核苷酸多态性与中国地区食管癌易感相关性研究

基金项目: 

教育部博士点基金新教师项目(No.20070610124)和教育部留学回国人员启动基金项目(No.2008890-19-11)资助

The Study of Esophageal Cancer Risk Associated with Polymorphisms of DNA Damage Repair Genes XRCC4 and RAD51

  • 摘要: 目的 探究DNA双链断裂修复基因XRCC4、RAD51单核苷酸多态性与食管癌易感性的关系。 方法 采用以医院为基础的病例-对照研究方法,应用PCR限制性内切酶片段长度多态性(PCR-RFLP)检测包括正常对照61例,食管癌患者123例XRCC4基因启动子区G-1394T(rs6869366)位点,以及RAD51-G135C位点的单核苷酸多态性。通过logistic回归分析计算出比值比(OR)和95%置信区间(95%CI)。 结果 XRCC4 rs6869366位点G等位基因的基因型(GT+GG)的携带者患食管癌的风险显著增加(OR=3.022,95%CI=1.487~6.142,P=0.002)。RAD51基因型GC和CC与携带GG的野生型个体相比,携带RAD51变异基因型(GC和CC)的个体具有更高的患癌风险(OR=3.643,95%CI=1.501~8.842,P<0.05)。 结论 DNA损伤修复系统中的基因多态性很可能与食管癌发生的易感性有关,XRCC4 G-1394T,RAD51-G135 C位点多态性改变均可增加食管癌的发病风险。

     

    Abstract: Objective Investigate the association between genetic polymorphism of DSBs repair gene XRCC4, RAD51 and susceptibility to esophageal cancer (EC). Methods A hospital based case-control study with 123 EC cases and 61 controls in a Chinese population was conducted. PCR-RFLP was applied to investigate the genotype of XRCC4 promoter G-1394T (rs6869366) and RAD51-G135C and then statistical analysis was conducted by calculating the adjusted odds ratios (OR) and 95% confidence intervals (95%CI). Results A significant difference of XRCC4-1394 polymorphism was observed between EC cases and controls (P<0.05). Carriers of the XRCC4 rs6869366 G allele (GC+GG) were at a higher risk of developing EC with the TT genotype as reference (OR=3.022, 95%CI=1.487-6.142, P=0.002). When GG served as the reference group of RAD51-G135C allele, variant genotype (GC and CC) had a significant increased risk of lung cancer (OR=3.643,95%CI=1.501-8.842,P<0.05). Conclusion Our findings indicated that genetic variants in DNA repair pathways may be involved in esophageal tumorigenesis. XRCC4 G-1394T and RAD51-G135C conferred risk for the process of developing EC.

     

  • [1]

    Xing D, Tan W, Lin D. Genetic polymorphisms and susceptibility to esophageal cancer among Chinese population (review). Oncol Rep,2003;10(5):1615-1623.

    [2]

    Hiyama T, Yoshihara M, Tanaka S, et al. Genetic polymorphisms and esophageal cancer risk. Int J Cancer,2007;121(8):1643-1658.

    [3]

    Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev,2002;11(12):1513-1530.

    [4]

    Qiao GB, Wu YL, Yang XN, et al. High-level expression of Rad51 is an independent prognostic marker of survival in non-small-cell lung cancer patients.Br J Cancer,2005;93(1):137-143.

    [5]

    Rollinson S, Smith AG, Allan JM, et al. RAD51 homologous recombination repair gene haplotypes and risk of acute myeloid leukaemia. Leuk Res,2007;31(2):169-174.

    [6]

    Poplawski T, Arabski M, Kozirowska D, et al. DNA damage and repair in gastric cancer——a correlation with the hOGG1 and RAD51 genes polymorphisms.Mutat Res,2006;601(1-2):83-91.

    [7]

    Richardson C, Stark JM, ommundsen M, et al. Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability.Oncogene,2004;23(2):546-553.

    [8]

    Bhatla D, Gerbing RB, Alonzo TA, et al.DNA repair polymorphisms and outcome of chemotherapy for acute myelogenous leukemia:a report from the Children's Ontology Group.Leukemia,2008;22(2):265-272.

    [9]

    Sung, P, Klein H. Mechanism of homologous recombination:mediators and helicases take on regulatory functions.Nat Rev Mol Cell Biol,2006;7(10):739-750.

    [10] 杨乐平, 谭兴国, 杨竹林等.胰腺癌大鼠RAD51和MAX的表达. 中南大学学报,2010;35(2):146-151.
    [11]

    Schwendener S, Raynard S, Paliwal S, et al.Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-Recombinase activity.J Biol Chem,2010;285(21):15739-15745.

    [12]

    Liu Y, Maizels N. Coordinated response of mammalian Rad51 and Rad52 to DNA damage. EMBO Rep,2000;1(1):85-90.

    [13]

    Jara L, Acevedo ML, Blanco R, et al. RAD51135G>C polymorphism and risk of familial breast cancer in a South American population.Cancer Genet Cytogenet,2007;178(1):65-69.

    [14]

    Flygare J, Falt S, Ottervald J, et al. Effects of HsRad51 overexpression on cell Proliferation, cell cycle progression, and apoptosis. Exp Cell Res,2001;268(1):61-69.

    [15]

    Raderschell E, Stout K. Elevated levels of Rad51 recombination protein in tumor cells.Cancer Res,2002;62(1):219-225.

计量
  • 文章访问数:  3353
  • HTML全文浏览量:  216
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-23
  • 修回日期:  2013-04-08
  • 发布日期:  2013-07-19

目录

    /

    返回文章
    返回