欢迎来到《四川大学学报(医学版)》 2025年5月28日 星期三

羽扇豆醇通过SIRT3/mTOR通路调节自噬以改善骨关节炎软骨细胞衰老

马运锋, 曹玉净, 韩小飞

马运锋, 曹玉净, 韩小飞. 羽扇豆醇通过SIRT3/mTOR通路调节自噬以改善骨关节炎软骨细胞衰老[J]. 四川大学学报(医学版), 2025, 56(1): 83-93. DOI: 10.12182/20250160503
引用本文: 马运锋, 曹玉净, 韩小飞. 羽扇豆醇通过SIRT3/mTOR通路调节自噬以改善骨关节炎软骨细胞衰老[J]. 四川大学学报(医学版), 2025, 56(1): 83-93. DOI: 10.12182/20250160503
MA Yunfeng, CAO Yujing, HAN Xiaofei. Lupeol Alleviates Chondrocytes Senescence in Osteoarthritis by Regulating Autophagy via the Sirtuin 3/Mechanistic Target of Rapamycin Kinase Pathway[J]. Journal of Sichuan University (Medical Sciences), 2025, 56(1): 83-93. DOI: 10.12182/20250160503
Citation: MA Yunfeng, CAO Yujing, HAN Xiaofei. Lupeol Alleviates Chondrocytes Senescence in Osteoarthritis by Regulating Autophagy via the Sirtuin 3/Mechanistic Target of Rapamycin Kinase Pathway[J]. Journal of Sichuan University (Medical Sciences), 2025, 56(1): 83-93. DOI: 10.12182/20250160503

羽扇豆醇通过SIRT3/mTOR通路调节自噬以改善骨关节炎软骨细胞衰老

基金项目: 2020年度河南省中医药科学研究专项课题(No. 20-21ZY3013)和2019年河南省中医药科学研究专项课题(No. 2019ZY2149)资助

Lupeol Alleviates Chondrocytes Senescence in Osteoarthritis by Regulating Autophagy via the Sirtuin 3/Mechanistic Target of Rapamycin Kinase Pathway

  • 摘要:
    目的 

    探讨羽扇豆醇(Lupeol)通过去乙酰化酶3(sirtuin 3, SIRT3)/雷帕霉素靶蛋白(mechanistic target of rapamycin kinase, mTOR)通路调控自噬在骨关节炎(osteoarthritis, OA)软骨细胞衰老中的作用机制。

    方法 

    分离原代小鼠膝关节软骨细胞,分为对照组,Lupeol(2.5、5、10、20、40 μmol/L)组,50 μmol/L叔丁基过氧化氢(tert-butyl hydroperoxide, TBHP)组,TBHP+Lupeol组,TBHP+Lupeol+氯喹(chloroquine, CQ;自噬抑制剂,20 μmol/L)组,TBHP+Lupeol+si-NC组,TBHP+Lupeol+si-SIRT3组。利用CCK-8、DCFH-DA探针、流式细胞术检测细胞增殖、活性氧(reactive oxygen species, ROS)水平、细胞凋亡;利用β-gal染色评估细胞衰老;利用Western blot检测SIRT3、mTOR、衰老标志蛋白(p21和p16)、细胞外基质(extracellular matrix, ECM)降解相关蛋白(aggrecan、collagen Ⅱ、ADAMTS5、MMP13)以及自噬相关蛋白(LC3BⅠ、LC3BⅡ、P62)的表达;利用RT-qPCR检测衰老相关分泌表型(senescence-associated secretory phenotype, SASP;包括IL-6、Cxcl10、MCP1、MMP3)的mRNA水平;利用免疫荧光检测LC3斑点;利用透射电镜观察自噬小体。将30只C57BL/6雄性野生型小鼠分为(n=10):Sham组、OA组、OA+Lupeol〔50 mg/(kg·d),灌胃给药〕组,利用番红O-固绿染色评估软骨损伤程度。

    结果 

    根据细胞活力测定结果,Lupeol的最佳处理浓度和时间选择为20 μmol/L和24 h。与TBHP组相比,TBHP+Lupeol组细胞活力升高(P<0.05);ROS产生、β-gal阳性细胞比例、p21和p16蛋白表达水平以及SASP mRNA水平降低(P<0.05);aggrecan和collagen Ⅱ蛋白水平升高、ADAMTS5和MMP13蛋白水平降低(P<0.05);细胞凋亡减少(P<0.05);P62蛋白水平降低、LC3BⅡ/LC3BⅠ的比值升高、LC3B荧光斑点强度以及自噬小体数量增加(P<0.05);SIRT3表达水平升高、mTOR磷酸化水平降低(P<0.05)。CQ处理有效废除Lupeol对细胞活力和自噬的促进作用,对ROS水平、细胞衰老、ECM降解、细胞凋亡的抑制作用(P<0.05)。沉默SIRT3逆转Lupeol对mTOR磷酸化水平的抑制作用和对自噬的促进作用(P<0.05)。在体内,与OA组相比,OA+Lupeol组软骨变性减少、国际骨关节炎研究协会评分降低(P<0.05);‌SIRT3表达水平上调、mTOR磷酸化水平降低、LC3BⅡ/LC3BⅠ比值升高、MMP13蛋白水平以及SASP mRNA水平降低(P<0.05)。

    结论 

    羽扇豆醇通过SIRT3/mTOR通路调节软骨细胞自噬以改善OA软骨细胞衰老。

     

    Abstract:
    Objective 

    To investigate the role of lupeol in mitigating chondrocyte senescence in osteoarthritis (OA) by regulating autophagy through the sirtuin 3 (SIRT3)/mechanistic target of rapamycin kinase (mTOR) pathway.

    Methods 

    Knee articular chondrocytes from primary-generation mice were isolated and divided into different groups, including a control group, a lupeol group (given 2.5, 5, 10, 20, and 40 μmol/L lupeol), a tert-butyl hydrogen peroxide (TBHP) group (receiving 50 μmol/L TBHP), TBHP + lupeol group, TBHP + lupeol + chloroquine (CQ) group (receiving 20 μmol/L CQ, an autophagy inhibitor), TBHP + lupeol + si-NC group, and TBHP + lupeol + si-SIRT3 group. Cell proliferation, reactive oxygen species (ROS) levels, and apoptosis were determined by CCK-8, DCFH-DA probe, and flow cytometry. Cell senescence was evaluated by β-gal staining. Western blot was used to determine the expressions of SIRT3, mTOR, senescence marker proteins (p21 and p16), extracellular matrix (ECM) degradation-related proteins (aggrecan, collagen Ⅱ, ADAMTS5, and MMP13), and autophagy-related proteins (LC3BⅠ, LC3BⅡ, and P62). RT-qPCR was used to determine the mRNA levels of senescence-associated secretory phenotypes (SASP), including IL-6, Cxcl10, MCP1, and MMP3. The expression of LC3 was detected by immunofluorescence. Autophagosomes were observed by transmission electron microscopy. A total of 30 male wild-type C57BL/6 mice were divided into different groups (n = 10), including a Sham group, an OA group, and an OA + lupeol group receiving 50 mg/(kg·d) lupeol via gastric gavage. Cartilage damage was evaluated by safranin O-fast green staining.

    Results 

    Based on the results of cell viability assay, 20 μmol/L lupeol treatment for 24 h was identified as the optimal intervention concentration and duration. Compared with that in the TBHP group, cell viability was elevated in the TBHP + lupeol group (P < 0.05); ROS production, the proportion of β-gal-positive cells, the protein expression levels of p21 and p16, and the mRNA levels of SASP were decreased (P < 0.05); the protein levels of aggrecan and collagen Ⅱ were elevated and the protein levels of ADAMTS5 and MMP13 were decreased (P < 0.05); apoptosis was reduced (P < 0.05); P62 protein levels were reduced and the LC3BⅡ/LC3BⅠ ratio, the intensity of LC3B fluorescence spots, and the number of autophagosomes were increased (P < 0.05); the expression level of SIRT3 was elevated and the level of mTOR phosphorylation was reduced (P < 0.05) in the TBHP+Lupeol group. CQ treatment effectively abolished the promotion effects of lupeol on cell viability and autophagy, and the inhibitory effects of lupeol on ROS level, cell senescence, ECM degradation, and apoptosis (P < 0.05). Silencing of SIRT3 reversed the inhibitory effect of lupeol on mTOR phosphorylation level and the promotion effect of lupeol on autophagy (P < 0.05). In the in vivo experiment, compared with the OA group, the OA + lupeol group showed reduced cartilage degeneration and lower scores for the Osteoarthritis Research Society International grading system (P < 0.05). The OA + lupeol group also showed up-regulated SIRT3 expression, reduced mTOR phosphorylation level, increased LC3BⅡ/LC3BⅠ ratio, reduced MMP13 protein level, and reduced mRNA level of SASP (P < 0.05).

    Conclusion 

    Lupeol alleviates chondrocyte senescence in osteoarthritis by regulating autophagy through the SIRT3/mTOR pathway.

     

  • 骨关节炎(osteoarthritis, OA)是一种多发生于老年人的关节退行性疾病,主要特征是软骨退化、滑膜炎症和软骨下骨重塑,最终导致疼痛和功能障碍[1]。截至目前,用于治疗OA的药物和治疗手段仍然缺乏[2]。因此,阐明其发病机制,制定有效的治疗策略至关重要。

    软骨细胞是关节软骨中唯一的细胞类型,负责产生细胞外基质(extracellular matrix, ECM)分子。研究显示,软骨细胞衰老在OA进展中发挥重要作用。衰老软骨细胞可分泌大量炎症蛋白,统称为衰老相关分泌表型(senescence-associated secretory phenotype, SASP),吸引免疫细胞导致慢性炎症[3-4]。由过量活性氧(reactive oxygen species, ROS)引起的氧化应激被认为是导致细胞衰老的重要因素[5]。自噬是使细胞适应应激条件来促进细胞生存的重要机制。自噬通过调节细胞凋亡和细胞内的抗氧化防御系统,使细胞能够更好地对抗氧化压力。在OA小鼠膝关节中,随着软骨的逐步降解,自噬水平受到抑制,细胞凋亡逐步增加[6-7]。因此,靶向自噬可作为延缓或阻止OA进展的新策略。

    羽扇豆醇(Lupeol)是一种天然存在的三萜类化合物,广泛分布于蔬菜、水果和药用植物中。药理学研究表明,Lupeol具有多种生物学作用,包括抗癌、抗菌、抗糖尿病、抗过敏、抗氧化和抗炎[8]。此外,Lupeol通过抑制PI3K/AKT/mTOR通路促进视网膜母细胞瘤细胞的自噬和凋亡[9],提示Lupeol对自噬具有调控作用。Sirtuin家族是NAD+依赖性蛋白脱乙酰酶,可调节多种生物细胞行为。其中,SIRT3是调节线粒体生物发生和自噬的重要成员,并参与衰老、代谢紊乱和肿瘤发生等生理病理过程[10-11]。最近的一项研究表明,SIRT3通过促进自噬恢复减轻OA诱导的软骨损伤[12]。基于此,本研究旨在探究Lupeol是否通过调控SIRT3表达诱导软骨细胞自噬以对抗衰老,从而延缓OA进展。

    30只8周龄C57BL/6雄性野生型小鼠及6只5日龄C57BL/6小鼠(雌雄各半)购自成都达硕实验动物有限公司。将小鼠饲养在无特定病原体的环境中,提供水和食物。所有动物实验方案均经河南省中医院(河南中医药大学第二附属医院)伦理委员会批准(豫中医伦审202303012)。

    Lupeol(L5632,纯度≥94%)和叔丁基过氧化氢(tert-butyl hydroperoxide, TBHP, 458139)购自Sigma-Aldrich;氯喹(chloroquine, CQ)购自Milwaukee;DMEM/F12(11320033)、胎牛血清(10100147C)购自Gibco;青霉素/链霉素(C0222)、RIPA(P0013B)、BCA蛋白检测试剂盒(P0010S)购自上海碧云天生物;Annexin V-FITC/PI凋亡检测试剂盒(HY-K1073)购自MedChemexpress;CCK-8(CK04)购自日本同仁公司;番红O-固绿染色试剂(G1375)、衰老相关β-半乳糖苷酶(senescence-associated β-galactosidase, SA-β-gal)染色试剂盒(G1580)购自北京索莱宝;ECL试剂(KGC4601-100)购自江苏凯基生物;总RNA分离试剂盒购自北京安诺伦;RevertAid First Strand cDNA合成试剂(K1622)购自Thermo Fisher;Forget-MeNotTM EvaGreen® qPCR master mix(BTM-31041-1)购自Biotium;NC siRNA和SIRT3 siRNA购自上海吉玛基因;lipofectamine 3000试剂(L3000015)购自Invitrogen;聚集蛋白聚糖(aggrecan)、Ⅱ型胶原(collagen Ⅱ)、具有血栓反应蛋白1型基序的ADAM金属肽酶(ADAM metallopeptidase with thrombospondin type 1 motif 5, ADAMTS5)、基质金属蛋白酶13(matrix metallopeptidase 13, MMP13)、周期蛋白依赖性激酶抑制剂2A(cyclin dependent kinase inhibitor 2A, p16)、细胞周期蛋白依赖性激酶抑制剂1A(cyclin dependent kinase inhibitor 1A, p21)、选择性自噬接头蛋白p62/sequestosome 1(selective autophagy junction protein p62/sequestosome 1, P62)、微管相关蛋白1轻链3 β(microtubule-associated protein 1 light chain 3 beta, LC3B)、雷帕霉素靶蛋白(mechanistic target of rapamycin kinase, mTOR)、去乙酰化酶3(sirtuin 3, SIRT3)抗体均购自Abcam。

    FACScan流式细胞仪购自美国Becton Dickinson;透射电子显微镜购自日本Hitachi;荧光显微镜购自日本Olympus;酶标仪购自瑞士Tecan。

    8周龄C57BL/6雄性野生型小鼠适应性饲喂一周后,随机分为3组(每组10只):假手术组(Sham组)、DMM组(OA组)、DMM+Lupeol组(OA+Lupeol组)。利用2%戊巴比妥(40 mg/kg)麻醉OA组和OA+Lupeol组小鼠后,通过不稳定内侧半月板(destabilization of the medial meniscus, DMM)手术建立小鼠骨关节炎模型。OA+Lupeol组小鼠DMM术后每天通过灌胃给药Lupeol 50 mg/(kg·d)。Sham组和DMM组小鼠每天通过灌胃给予相同剂量的生理盐水。术后8周通过颈椎脱臼法处死各组小鼠,对其关节进行组织学评估。

    将不同实验组小鼠的膝关节组织在体积分数为4%多聚甲醛中固定48 h,脱钙21 d,然后包埋于石蜡中。经膝关节内侧从矢状面连续切取4 μm厚的切片,并按照说明书的要求进行番红O-固绿染色。膝关节组织学切片根据国际骨关节炎研究学会(Osteoarthritis Research Society International, OARSI)评分系统进行分级。一般将切片分为0~6级:0级,正常软骨;0.5级,番红O染色轻度丢失,无结构改变;1级,微小纤颤而无软骨丢失;2级,垂直裂隙向下至表层以下的层;钙化软骨的垂直裂隙或侵蚀影响关节面的25%(3级)、25%~50%(4级)、50%~75%(5级)和75%(6级)。

    将新生C57BL/6小鼠通过颈椎脱臼法安乐死,并在无菌条件下分离膝关节软骨。将软骨组织切成块(1 mm3),在37 ℃下用2 mg/mL胶原酶Ⅱ(0.1%)消化4 h。将消化的软骨组织悬浮在含10%胎牛血清和1%青霉素/链霉素的DMEM/F12培养基中,并置于37 ℃含体积分数为5%CO2的培养箱中培养。24 h后,更换培养基,收集第二代或第三代软骨细胞用于后续实验。

    细胞分为以下几组:①对照组:用0.1%的DMSO处理细胞24 h;②Lupeol组:分别用2.5、5、10、20、40 μmol/L的Lupeol处理细胞24 h;③TBHP组:用50 μmol/L的TBHP处理细胞24 h;④TBHP+不同浓度Lupeol组:用50 μmol/L的TBHP处理细胞24 h后,再用2.5、5、10、20 μmol/L的Lupeol处理细胞24 h;⑤TBHP+Lupeol不同作用时间组:用50 μmol/L的TBHP处理细胞24 h后,再用20 μmol/L的Lupeol处理细胞24 h、48 h;⑥TBHP+Lupeol+CQ组:用50 μmol/L的TBHP处理细胞24 h,再用20 μmol/L的Lupeol处理细胞24 h,随后用20 μmol/L的CQ处理细胞6 h;⑦TBHP+Lupeol+si-NC/si-SIRT3组:按照制造商的说明利用lipofectamine 3000试剂将100 nmol/L NC siRNA/SIRT3 siRNA转染细胞12 h,再用50 μmol/L的TBHP处理24 h,随后用20 μmol/L的Lupeol处理24 h。

    采用CCK-8试剂盒检测细胞活力。将细胞在96孔板中培养,并根据指示暴露于各种处理24 h。然后在每孔加入10 μL CCK-8试剂,并在37 ℃孵育2 h。使用酶标仪在450 nm处测量吸光度值。所有实验重复3次。

    使用荧光探针DCFH-DA根据厂家说明测定细胞内ROS水平。简而言之,软骨细胞被种植在6孔板(3×105细胞/孔),分组处理后,软骨细胞用PBS洗涤3次,在37 ℃避光条件下加入10 μmol/L的DCFH-DA孵育0.5 h。用PBS洗涤后,将细胞置于荧光显微镜下并记录图像。

    将细胞接种于6孔板中培养过夜,分组处理后收集细胞,随后重悬于1×Annexin结合缓冲液中。在室温下加入Annexin V-FITC(5 μL)和PI(5 μL)孵育15 min。然后通过FACScan流式细胞仪分析细胞凋亡。

    利用含有1 mmol/L 蛋白酶抑制剂的RIPA裂解缓冲液提取软骨细胞和组织中的总蛋白。采用BCA蛋白检测试剂盒测定蛋白浓度。用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分离蛋白,转移到聚偏二氟乙烯膜上。用5%脱脂奶粉孵育2 h后,用适当的一抗在4 ℃孵育过夜。接下来,将条带与各自的二抗在室温下孵育2 h,然后使用ECL试剂进行可视化。最后,用Image Lab 3.0软件(Bio-Rad)检测印迹强度。

    使用总RNA分离试剂盒提取RNA,并按照制造商的说明使用RevertAid First Strand cDNA合成试剂盒将其反转录为cDNA。采用CFX96TM实时PCR检测系统(Bio-Rad),使用Forget-MeNotTM EvaGreen® qPCR master mix进行定量PCR。使用2−∆∆Ct方法计算靶基因的表达水平。

    将软骨细胞接种于放置盖破片的六孔板中,处理后,利用体积分数为4%多聚甲醛固定。将细胞置于Triton X-100(0.3%)中渗透15 min,随后在37 ℃下用10%山羊血清封闭1 h。将细胞与anti-LC3(1∶200)在4 ℃孵育过夜,随后在室温与荧光素标记的二抗(Alexa Fluor 488或Alexa Fluor 594)在黑暗中孵育1 h。利用DAPI染色5 min标记细胞核。使用荧光显微镜捕获图像,并测量荧光强度用于定量分析。

    将软骨细胞在2.5%戊二醛中固定过夜,在2%四氧化锇中固定1 h,再用2%乙酸铀酰染色1 h。在分级浓度的乙醇和丙酮溶液中脱水,将样品包埋在环氧树脂中,并切成超薄切片(50~60 nm)。利用甲苯胺蓝染色以定位细胞,并在透射电子显微镜下观察和拍照。

    根据制造商的说明,使用SA-β-gal染色试剂盒检测软骨细胞衰老。衰老细胞被染成蓝绿色。在显微镜下拍摄SA-β-gal染色图像,并根据阳性细胞的比例对结果进行量化。

    结果以$\bar x\pm s $表示,所有实验至少独立重复3次。采用SPSS 22.0统计软件对数据进行分析。组间比较均采用单因素方差分析和Tukey's post hoc检验。P<0.05为差异有统计学意义。

    与对照组相比, 2.5、5、10、20 μmol/L的Lupeol处理均不改变小鼠原代软骨细胞的细胞活力(P>0.05),但40 μmol/L的Lupeol处理可抑制细胞活力(P<0.05,图1A)。与对照组相比,TBHP组细胞活力下降(P<0.01);与TBHP组相比,用2.5、5、10 μmol/L的Lupeol处理后不改变细胞活力(P>0.05),20 μmol/L的Lupeol处理后会促进细胞活力(P<0.05,图1B)。与TBHP组相比,20 μmol/L的Lupeol处理24 h和48 h均上调细胞活力(P<0.05),但与Lupeol处理24 h组相比,Lupeol处理48 h组细胞活力降低(P<0.05,图1C)。因此,后续实验中Lupeol的处理浓度和处理时间选择为20 μmol/L和24 h。

    图  1  Lupeol的实验浓度和处理时间筛选
    Figure  1.  Selecting the experimental concentration and duration of lupeol treatment
    A, Effects of different concentrations of lupeol on chondrocyte activity. B, Effects of different concentrations of lupeol on the activity of chondrocytes treated with TBHP. C, Effect of lupeol treatment time on the activity of TBHP-treated chondrocytes. * P < 0.05, ** P < 0.01. n = 4.

    与对照组相比,TBHP组细胞活力下降(P<0.05,图2A),ROS水平(图2B)、β-gal阳性细胞比例(图2C)、p21和p16蛋白表达水平(图2D2E)、SASP(包括IL-6Cxcl10MCP1MMP3)的mRNA水平(图2F)均升高(P<0.05),aggrecan和collagen Ⅱ的蛋白水平降低(P<0.05,图2G2H),ADAMTS5和MMP13的蛋白水平(图2G2H)、细胞凋亡水平(图2I2J)均升高(P<0.05)。与TBHP组相比,TBHP+Lupeol组细胞活力升高(P<0.05,图2A),ROS水平(图2B)、β-gal阳性细胞比例(图2C)、p21和p16蛋白表达水平(图2D2E)、SASP的mRNA水平(图2F)均降低(P<0.05),aggrecan和collagen Ⅱ的蛋白水平上调(P<0.05,图2G2H),ADAMTS5和MMP13的蛋白水平(图2G2H)、细胞凋亡水平(图2I2J)均下降(P<0.05)。

    图  2  Lupeol缓解TBHP诱导的软骨细胞衰老和细胞外基质降解
    Figure  2.  Lupeol alleviated TBHP-induced chondrocyte senescence and extracellular matrix degradation
    A, Measurement of cell viability; B, determination of ROS level; C, β-gal staining; D and E, evaluatoin of p21 and p16 protein expression; F, determination of IL-6, Cxcl10, MCP1, and MMP3 mRNA levels; G and H, evaluation of aggrecan, collagen Ⅱ, ADAMTS5, and MMP13 protein expression; I and J, evaluation of apoptosis. * P < 0.05 , ** P < 0.01. n = 4.

    与对照组相比,TBHP组P62蛋白水平升高(P<0.05,图3A3B),LC3BⅡ/LC3BⅠ的比值降低(P<0.05,图3A3C),LC3B斑点荧光强度减弱(图3D),自噬小体数量减少(图3E)。与TBHP组相比,TBHP+Lupeol组P62蛋白水平降低(P<0.05,图3A3B),LC3BⅡ/LC3BⅠ的比值升高(P<0.05,图3A3C),LC3B斑点荧光强度增强(图3D),自噬小体数量增加(图3E)。

    图  3  Lupeol缓解TBHP诱导的软骨细胞自噬抑制
    Figure  3.  Lupeol alleviated TBHP-induced inhibition of autophagy in chondrocytes
    A-C, Determination of P62 and LC3B protein expression; D, immunofluorescence staining for LC3B; E, transmission electron microscope images. The arrow points to the autophagosome. * P < 0.05. n = 4.

    与TBHP+Lupeol组相比,TBHP+Lupeol+CQ组LC3BⅡ/LC3BⅠ的比值降低(P<0.05,图4A4B),p21和p16的蛋白表达水平(图4A和4C)、β-gal阳性细胞比例(图4D)、SASP(包括IL-6Cxcl10MCP1MMP3)的mRNA水平(图4E)、ROS水平(图4G)均升高(P<0.05),细胞活力(图4F)、aggrecan和collagen Ⅱ的蛋白水平(图4H4I)均下降(P<0.05),ADAMTS5和MMP13的蛋白水平(图4H4I)、细胞凋亡水平(图4J4K)均升高(P<0.05)。

    图  4  CQ拮抗Lupeol对TBHP诱导的软骨细胞衰老和ECM降解的抑制作用
    Figure  4.  CQ antagonized the inhibitory effect of lupeol on TBHP-induced chondrocyte senescence and ECM degradation
    A-C, Determination of LC3B, p21 and p16 protein expression; D, β-gal staining; E, assessment of IL-6, Cxcl10, MCP1, and MMP3 mRNA levels; F, assessment of ROS level; G, measurement of cell viability; H-I, assessment of aggrecan, collagen Ⅱ, ADAMTS5, and MMP13 protein expression; J and K, assessment of apoptosis. * P < 0.05, ** P < 0.01. n = 4.

    与对照组相比,TBHP组SIRT3的蛋白水平降低(P<0.05,图5A5B),磷酸化的mTOR(p-mTOR)的蛋白水平升高(P<0.05,图5A5C)。与TBHP组相比,TBHP+Lupeol组SIRT3的蛋白水平升高(P<0.05,图5A5B),p-mTOR的蛋白水平降低(P<0.05,图5A5C)。与TBHP+Lupeol组相比,TBHP+Lupeol+si-SIRT3组SIRT3的蛋白水平(图5D5E)和LC3BⅡ/LC3BⅠ的比值(图5D5G)均降低(P<0.05),p-mTOR(图5D和5F)和P62(图5D和5H)的蛋白水平均升高(P<0.05)。

    图  5  Lupeol通过SIRT3/mTOR通路诱导自噬
    Figure  5.  Lupeol induced autophagy through the SIRT3/mTOR pathway
    A-C, Assessment of SIRT3, p-mTOR, and t-mTOR protein expression; D-H, assessment of SIRT3, p-mTOR, t-mTOR, P62, and LC3B protein expression. * P < 0.05, ** P < 0.01. n = 4.

    番红O-固绿染色结果显示,OA小鼠关节软骨的番红O染色减少,并出现软骨纤颤和软骨侵蚀,而Lupeol给药减轻了软骨损伤(图6A)。与Sham组相比,OA组OARSI评分升高(P<0.05,图6B),SIRT3的蛋白水平(图6C6D)、LC3BⅡ/LC3BⅠ的比值(图6C6E)均降低(P<0.05),p-mTOR和MMP13的蛋白水平(图6C-6E)、SASP(包括IL-6Cxcl10MCP1MMP3)的mRNA水平(图6F)均升高(P<0.05)。与OA组相比,OA+Lupeol组OARSI评分降低(P<0.05,图6B),SIRT3的蛋白水平(图6C6D)、LC3BⅡ/LC3BⅠ的比值(图6C6E)均升高(P<0.05),p-mTOR和MMP13的蛋白水平(图6C~6E)、SASP的mRNA水平(图6F)均降低(P<0.05)。

    图  6  Lupeol抑制小鼠骨关节炎进展
    Figure  6.  Lupeol inhibited the progression of osteoarthritis in mice
    A, Image of saffranine O-fast green staining; B, scores for the Osteoarthritis Research Society International grading system; C-E, assessment of SIRT3, p-mTOR, t-mTOR, MMP13, and LC3B protein expression; F, assessment of IL-6, Cxcl10, MCP1, and MMP3 mRNA levels. * P < 0.05. n = 10.

    OA是一种常见的退行性关节疾病,经常发生在65岁以上的老年患者中,影响全球约16%的人口。OA主要表现为软骨下骨重塑、关节炎症、骨赘形成和软骨变性[1]。尽管OA是全球残疾和社会经济损失的主要原因,然而,由于缺乏对OA发病机制的深入了解,目前仍然缺乏用于治疗OA的药物[2]

    细胞衰老是指不可逆的细胞周期停滞状态,在这种状态下,细胞对生长促进刺激产生耐药性。除了细胞周期停滞外,衰老细胞还表现出某些共同特征,包括酸性溶酶体β-gal活性增加,p21和p16的激活,以及SASP的分泌增强,SASP包括各种促炎细胞因子、趋化因子和蛋白酶[13]。软骨细胞是关节软骨中唯一的细胞类型,负责产生ECM分子。研究显示,软骨细胞衰老促进OA进展。OA关节软骨中SA-β-gal的表达与OA软骨病变呈正相关[14]。局部清除衰老软骨细胞可减轻创伤后OA的发展[15]。此外,将衰老细胞移植到膝关节可诱导小鼠出现OA样状态[16]。因此,阐明软骨细胞衰老的分子机制将有助于发现新的治疗策略,以减缓或阻止OA的进展。多种因素可诱导软骨细胞衰老,包括持续的氧化应激。细胞内过量的ROS可对DNA和蛋白质产生氧化损伤,促进衰老过程[5]。本研究在体外实验中使用TBHP作为ROS供体来诱导软骨细胞衰老,结果显示TBHP处理显著促进软骨细胞中ROS水平。TBHP处理可促进软骨细胞衰老、ECM降解和细胞凋亡。此外,TBHP处理通过下调LC3BⅡ/LC3BⅠ比值、上调P62的表达以及阻碍自噬小体形成抑制软骨细胞自噬活性,表明TBHP可能通过抑制软骨细胞自噬加速细胞衰老和凋亡。

    自噬是一种清除功能失调的细胞器和大分子的细胞内稳态机制。大量证据表明,在OA动物模型中,激活自噬可有效缓解OA的发生和发展[6, 17]。FBXO21通过磷酸化ERK抑制软骨细胞自噬,以加速OA大鼠软骨退变[17]。受TGF-β/TAK1信号通路调控的FoxO1通过激活自噬在OA小鼠中维持关节软骨的稳态[7]。在OA的致病因素下,自噬通过降解受损的蛋白质和细胞器来保护软骨细胞免于凋亡,并维持其细胞内稳态。因此,激活/恢复自噬可能是预防OA发展的一种有前景的策略。据报道,自噬缺陷参与了年龄相关性疾病的发病机制,并促进多种组织的炎症。在衰老过程中,自噬逐渐减少并诱导衰老,最终导致OA严重程度增加[18]。本研究结果显示,在氧化应激诱导的软骨细胞衰老模型中,软骨细胞自噬活性降低,ECM降解和细胞凋亡水平升高;Lupeol处理可增强自噬活性,并抑制软骨细胞衰老、ECM降解和细胞凋亡。在Lupeol的基础上添加自噬抑制剂CQ,Lupeol对软骨细胞的保护作用被废除。此外,在OA小鼠模型中,软骨细胞自噬活性也降低,表明激活自噬对于OA软骨细胞存活十分重要。

    Lupeol具有广泛的药理学活性,包括抗炎和抗氧化。Lupeol已被证明可抑制12-O-十四烷酰基激素-13-乙酸酯诱导的各种炎症反应[19]。Lupeol通过抑制活化的胶质细胞和炎症介质以及减少小鼠脑内Aβ的累积,对多种刺激(如氧化应激、自由基生成和神经炎症)诱导的神经损伤具有保护作用[20]。本研究利用不同浓度的Lupeol处理软骨细胞,发现高浓度Lupeol(40 μmol/L)对软骨细胞活力有损害。在TBHP刺激后,利用较低浓度的Lupeol处理软骨细胞,发现仅20 μmol/L的Lupeol可缓解TBHP诱导的细胞活力下降,表明Lupeol对软骨细胞活力的保护作用有剂量依赖性。因此20 μmol/L的Lupeol被用于后续研究。此外,在TBHP刺激后,利用20 μmol/L的Lupeol分别处理软骨细胞24 h和48 h,细胞活力均升高且在24 h组最高,表明Lupeol对软骨细胞活力的保护作用有一定的时间依赖性。一些自噬调控剂已被证明参与OA进展。雷帕霉素通过抑制mTOR信号通路激活自噬,以减轻OA小鼠的软骨退化和滑膜炎症[21]。当归多糖通过激活ERK1/2依赖的自噬显著改善了硝普钠诱导的软骨细胞凋亡,表明当归多糖可能成为OA治疗的潜在补充治疗手段[22]。木犀草素给药通过诱导自噬减轻软骨细胞代谢紊乱并有效缓解OA小鼠软骨丢失[23]。此外,Lupeol可参与自噬调控,通过抑制PI3K/AKT/mTOR通路促进视网膜母细胞瘤细胞的自噬和凋亡[9]。Lupeol通过抑制Akt-mTOR通路诱导自噬,从而抑制乳腺癌细胞的上皮-间充质转化[24]。本研究结果显示Lupeol与当归多糖和木犀草素作用类似,可在受损的软骨细胞中激活自噬以减轻细胞损伤。本研究聚焦于TBHP诱导的软骨细胞氧化损伤,结果发现Lupeol可减轻TBHP诱导的软骨细胞衰老和凋亡。机制上,Lupeol通过促进SIRT3的表达和抑制mTOR的磷酸化以激活自噬,这与雷帕霉素靶向mTOR通路激活自噬有相似之处。据报道,Lupeol动物模型中显示出可忽略不计的全身毒性,表明其在临床应用中有着良好的前景[19]。本研究结果显示Lupeol通过灌胃给药可减轻OA小鼠的软骨变性。Lupeol的低毒性和给药方式简单的优点促使它具有成为治疗OA的新型药物的潜力,为未来的药物开发提供了良好的前景。

    SIRT3是调节线粒体生物发生的重要成员,并参与自噬、衰老和代谢紊乱等几个重要的生理病理过程。最近的一项研究表明,软骨SIRT3的表达随年龄的增长而下降,在衰老软骨中恢复SIRT3的表达可通过挽救乙酰化依赖的SOD2活性的抑制来提高软骨对氧化应激的抵抗力,从而减缓OA的发展[25]。此外,SIRT3可通过多种途径调控mTOR的磷酸化从而激活自噬。SIRT3通过促进LKB1的磷酸化,激活AMPK,降低mTOR的磷酸化,从而激活自噬以保护鱼藤酮诱导的SH-SY5Y细胞损伤[26]。另一项研究显示,SIRT3通过抑制PI3K/AKT/mTOR信号传导激活自噬,进而缓解OA诱导的软骨变性[12]。这些研究表明SIRT3可能通过多种途径调控mTOR的磷酸化,从而激活自噬,以在阻碍OA进展中发挥积极作用。本研究结果显示,SIRT3的表达水平在氧化应激诱导的软骨细胞衰老模型和DMM手术诱导的OA小鼠模型中均降低。Lupeol可通过促进SIRT3表达抑制mTOR信号传导,进而促进软骨细胞自噬激活,以减轻氧化损伤诱导的软骨细胞衰老和凋亡,表明SIRT3在保护软骨细胞存活中发挥有益作用。

    本研究还存在一些局限性。首先,本研究虽证明了Lupeol通过激活自噬缓解软骨细胞氧化损伤,从而在OA进展中发挥软骨保护作用,但Lupeol发挥作用的途径可能不止这一条。其次,Lupeol主要通过SIRT3/mTOR通路调控自噬,但不能排除其他途径的参与。因此,本研究结果仅作为探索性结果。综上所述,本研究证明Lupeol可通过调控SIRT3/ mTOR轴促进自噬激活,进而减轻氧化应激诱导的软骨细胞衰老,从而减缓OA进展。

    *    *    *

    作者贡献声明 马运锋负责论文构思、经费获取、研究方法、监督指导、初稿写作和审读与编辑写作,曹玉净负责研究方法、研究项目管理和提供资源,韩小飞负责经费获取、研究方法、验证和可视化。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。

    Author Contribution  MA Yunfeng is responsible for conceptualization, funding acquisition, methodology, supervision, writing--original draft, and writing--review and editing. CAO Yujing is responsible for methodology, project administration, and resources. HAN Xiaofei is responsible for funding acquisition, methodology, validation, and visualization. All authors consented to the submission of the article to the Journal. All authors approved the final version to be published and agreed to take responsibility for all aspects of the work.

    利益冲突 所有作者均声明不存在利益冲突

    Declaration of Conflicting Interests All authors declare no competing interests.

  • 图  1   Lupeol的实验浓度和处理时间筛选

    Figure  1.   Selecting the experimental concentration and duration of lupeol treatment

    A, Effects of different concentrations of lupeol on chondrocyte activity. B, Effects of different concentrations of lupeol on the activity of chondrocytes treated with TBHP. C, Effect of lupeol treatment time on the activity of TBHP-treated chondrocytes. * P < 0.05, ** P < 0.01. n = 4.

    图  2   Lupeol缓解TBHP诱导的软骨细胞衰老和细胞外基质降解

    Figure  2.   Lupeol alleviated TBHP-induced chondrocyte senescence and extracellular matrix degradation

    A, Measurement of cell viability; B, determination of ROS level; C, β-gal staining; D and E, evaluatoin of p21 and p16 protein expression; F, determination of IL-6, Cxcl10, MCP1, and MMP3 mRNA levels; G and H, evaluation of aggrecan, collagen Ⅱ, ADAMTS5, and MMP13 protein expression; I and J, evaluation of apoptosis. * P < 0.05 , ** P < 0.01. n = 4.

    图  3   Lupeol缓解TBHP诱导的软骨细胞自噬抑制

    Figure  3.   Lupeol alleviated TBHP-induced inhibition of autophagy in chondrocytes

    A-C, Determination of P62 and LC3B protein expression; D, immunofluorescence staining for LC3B; E, transmission electron microscope images. The arrow points to the autophagosome. * P < 0.05. n = 4.

    图  4   CQ拮抗Lupeol对TBHP诱导的软骨细胞衰老和ECM降解的抑制作用

    Figure  4.   CQ antagonized the inhibitory effect of lupeol on TBHP-induced chondrocyte senescence and ECM degradation

    A-C, Determination of LC3B, p21 and p16 protein expression; D, β-gal staining; E, assessment of IL-6, Cxcl10, MCP1, and MMP3 mRNA levels; F, assessment of ROS level; G, measurement of cell viability; H-I, assessment of aggrecan, collagen Ⅱ, ADAMTS5, and MMP13 protein expression; J and K, assessment of apoptosis. * P < 0.05, ** P < 0.01. n = 4.

    图  5   Lupeol通过SIRT3/mTOR通路诱导自噬

    Figure  5.   Lupeol induced autophagy through the SIRT3/mTOR pathway

    A-C, Assessment of SIRT3, p-mTOR, and t-mTOR protein expression; D-H, assessment of SIRT3, p-mTOR, t-mTOR, P62, and LC3B protein expression. * P < 0.05, ** P < 0.01. n = 4.

    图  6   Lupeol抑制小鼠骨关节炎进展

    Figure  6.   Lupeol inhibited the progression of osteoarthritis in mice

    A, Image of saffranine O-fast green staining; B, scores for the Osteoarthritis Research Society International grading system; C-E, assessment of SIRT3, p-mTOR, t-mTOR, MMP13, and LC3B protein expression; F, assessment of IL-6, Cxcl10, MCP1, and MMP3 mRNA levels. * P < 0.05. n = 10.

  • [1]

    JIANG Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage, 2022, 30(2): 207-215. doi: 10.1016/j.joca.2021.11.009.

    [2]

    ABRAMOFF B, CALDERA F E. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 2020, 104(2): 293-311. doi: 10.1016/j.mcna.2019.10.007.

    [3]

    FAUST H J, ZHANG H, HAN J, et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest, 2020, 130(10): 5493-5507. doi: 10.1172/jci134091.

    [4]

    LOESER R F, KELLEY K L, ARMSTRONG A, et al. Deletion of JNK enhances senescence in joint tissues and increases the severity of age-related osteoarthritis in mice. Arthritis Rheumatol, 2020, 72(10): 1679-1688. doi: 10.1002/art.41312.

    [5]

    DAVALLI P, MITIC T, CAPORALI A, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev, 2016, 2016: 3565127. doi: 10.1155/2016/3565127.

    [6]

    ARIAS C, SALAZAR L A. Autophagy and polyphenols in osteoarthritis: a focus on epigenetic regulation. Int J Mol Sci, 2021, 23(1): 421-434. doi: 10.3390/ijms23010421.

    [7]

    WANG C, SHEN J, YING J, et al. FoxO1 is a crucial mediator of TGF-β/TAK1 signaling and protects against osteoarthritis by maintaining articular cartilage homeostasis. Proc Natl Acad Sci U S A, 2020, 117(48): 30488-30497. doi: 10.1073/pnas.2017056117.

    [8]

    SOHAG A A M, HOSSAIN M T, RAHAMAN M A, et al. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. Phytomedicine, 2022, 99: 154012. doi: 10.1016/j.phymed.2022.154012.

    [9]

    CHE S, WU S, YU P. Lupeol induces autophagy and apoptosis with reduced cancer stem-like properties in retinoblastoma via phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin inhibition. J Pharm Pharmacol, 2022, 74(2): 208-215. doi: 10.1093/jpp/rgab060.

    [10]

    DIAO Z, JI Q, WU Z, et al. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res, 2021, 49(8): 4203-4219. doi: 10.1093/nar/gkab161.

    [11]

    JIN J, BAI L, WANG D, et al. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep, 2023, 24(5): e56052. doi: 10.15252/embr.202256052.

    [12]

    XU K, HE Y, MOQBEL S A A, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. Int J Biol Macromol, 2021, 175: 351-360. doi: 10.1016/j.ijbiomac.2021.02.029.

    [13]

    MIWA S, KASHYAP S, CHINI E, et al. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest, 2022, 132(13): e158447. doi: 10.1172/jci158447.

    [14]

    GAO S G, ZENG C, LI L J, et al. Correlation between senescence-associated beta-galactosidase expression in articular cartilage and disease severity of patients with knee osteoarthritis. Int J Rheum Dis, 2016, 19(3): 226-232. doi: 10.1111/1756-185x.12096.

    [15]

    JEON O H, KIM C, LABERGE R M, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med, 2017, 23(6): 775-781. doi: 10.1038/nm.4324.

    [16]

    XU M, BRADLEY E W, WEIVODA M M, et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci, 2017, 72(6): 780-785. doi: 10.1093/gerona/glw154.

    [17]

    LIN Z, MIAO J, ZHANG T, et al. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy. Aging Cell, 2021, 20(2): e13306. doi: 10.1111/acel.13306.

    [18]

    CHEN X, GONG W, SHAO X, et al. METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis, 2022, 81(1): 87-99. doi: 10.1136/annrheumdis-2021-221091.

    [19]

    LIU K, ZHANG X, XIE L, et al. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res, 2021, 164: 105373. doi: 10.1016/j.phrs.2020.105373.

    [20]

    AHMAD R, KHAN A, REHMAN I U, et al. Lupeol treatment attenuates activation of glial cells and oxidative-stress-mediated neuropathology in mouse model of traumatic brain injury. Int J Mol Sci, 2022, 23(11):6086. doi: 10.3390/ijms23116086.

    [21]

    CARAMÉS B, HASEGAWA A, TANIGUCHI N, et al. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis, 2012, 71(4): 575-581. doi: 10.1136/annrheumdis-2011-200557.

    [22]

    XU C, NI S, ZHUANG C, et al. Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway. Arthritis Res Ther, 2021, 23(1): 47. doi: 10.1186/s13075-020-02409-3.

    [23]

    LI Y, DING Z, LIU F, et al. Luteolin regulating synthesis and catabolism of osteoarthritis chondrocytes via activating autophagy. Heliyon, 2024, 10(11): e31028. doi: 10.1016/j.heliyon.2024.e31028.

    [24]

    ZHANG X, GAO Z, CHEN K, et al. Lupeol inhibits the proliferation and migration of MDA-MB-231 breast cancer cells via a novel crosstalk mechanism between autophagy and the EMT. Food Funct, 2022, 13(9): 4967-4976. doi: 10.1039/d2fo00483f.

    [25]

    FU Y, KINTER M, HUDSON J, et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol, 2016, 68(8): 1887-1898. doi: 10.1002/art.39618.

    [26]

    ZHANG M, DENG Y N, ZHANG J Y, et al. SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis, 2018, 9(2): 273-286. doi: 10.14336/ad.2017.0517.

© 2025《四川大学学报(医学版)》编辑部
cc

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0

图(6)
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  26
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-05
  • 修回日期:  2024-12-05
  • 发布日期:  2025-01-19
  • 刊出日期:  2025-01-19

目录

/

返回文章
返回