欢迎来到《四川大学学报(医学版)》

青藏高原环境下大鼠骨骼微结构的基础研究

Basic Research on the Microstructure of Rat Bones in the High-Altitude Environment of Qinghai-Tibet Plateau

  • 摘要:
    目的 在真实的高原环境建立低压缺氧大鼠模型,应用Micro CT、血液生化、病理等多种手段,了解真实高原环境对于大鼠骨量以及骨微结构的影响,并探讨其可能的机制。
    方法 将SD大鼠运送至青海玉树高原实验室(海拔4250 m),分别饲养4、8、18个月后,将动物运回成都四川大学华西医院分子影像实验室(海拔500 m),与同期对照组大鼠进行相关检测。检测方法包括:血液生化学;影像学Micro CT;病理学ELISA、Western blot、HE和TRAP染色等病理检查。
    结果  与同期对照组大鼠相比,高原饲养4个月(高原-4)、高原饲养18个月(高原-18)组大鼠体质量下降〔高原-4组vs.平原-4组:(513.75±35.10) g vs. (649.18±60.03) g,P<0.01;高原-18组vs.平原-18组:(535.58±66.65) g vs. (670.86±44.96) g,P<0.01〕;高原饲养8个月(高原-8)组、高原-18组血清中Ca2+浓度较对照组升高〔高原-8组vs.平原-8组:(2.48±0.09) mmol/L vs. (2.38±0.07) mmol/L,P<0.05;高原-18组vs.平原-18组:(2.55±0.11) mmol/L vs. (2.13±0.27) mmol/L,P<0.05〕,P3+未观察到差异有统计学意义。骨代谢指标Ⅰ型胶原交联羧基末端肽(cross-linked carboxy-terminal telopeptide of type Ⅰ collagen, CTX-Ⅰ):高原各组较平原组均增高〔高原-4组vs.平原-4组:(1.44±0.08) ng/mL vs. (0.70±0.13) ng/mL,P<0.01;高原-8组vs.平原-8组:(1.52±0.10) ng/mL vs. (0.75±0.10) ng/mL,P<0.01;高原-18组vs.平原-18组:(2.70±0.13) ng/mL vs. (1.94±0.15) ng/mL,P<0.01〕。此外CT结果显示高原3组骨小梁的骨体积分数降低〔高原-4组vs.平原-4组:(7.48±2.35)% vs. (10.40±2.93)%,P<0.05;高原-8组vs.平原-8组:(7.17±2.68)% vs. (10.09±2.95)%,P<0.05;高原-18组vs.平原-18组:(2.90±2.91)% vs. (8.68±4.11)% ,P<0.01〕以及骨小梁分离度增大〔高原-4组vs.平原-4组:(0.70±0.12) mm vs. (0.60±0.06) mm,P<0.05;高原-8组vs.平原-8组:(0.68±0.07) mm vs. (0.59±0.05) mm,P<0.01;高原-18组vs.平原-18组:(0.80±0.09) mm vs. (0.70±0.09) mm,P<0.05〕。TRAP染色高原-4、高原-18组破骨细胞增多,Western blot提示高原环境中核因子κB受体活化因子配体(receptor activator of nuclear factor-κB ligand, RANKL)、缺氧诱导因子-1α(hypoxia inducible factor-1α, HIF-1α)的表达增高,而骨保护素(osteoprotegerin, OPG)的表达受到抑制。
    结论 高原环境对于大鼠股骨的影响主要在于减少松质骨骨量,破坏骨微结构。

     

    Abstract:
    Objective  To establish a hypobaric hypoxia rat model in a real high-altitude environment, to investigate the effects of the real high-altitude environment on rat bone mass and bone microstructure using multiple methods such as Micro CT, blood biochemistry, and pathology, and to explore the potential mechanisms involved.
    Methods Sprague Dawley (SD) rats were transported to the Yushu Plateau Laboratory (at 4250 m above sea level) in Qinghai Province and kept there for 4, or 8, or 18 months. These groups were designated as H-4, H-8, and H-18, respectively. Upon completion of the high-altitude exposure, these animals were transported to the Molecular Imaging Laboratory, West China Hospital, Sichuan University (at 500 m above sea level) in Chengdu for relevant testing and comparison with the control animals raised in a low-altitude environment for the same durations (designated L-4, L-8, and L-18). The tests performed included blood biochemistry, Micro CT imaging, and pathological assessments such as ELISA, Western blot, and HE and TRAP staining.
    Results Compared with that of the control group, the body mass of rats in the H-4 and H-18 groups decreased significantly (H-4 group vs. L-4 group: 513.75±35.10 g vs. 649.18±60.03 g, P<0.01; H-18 group vs. L-18 group: 535.58±66.65 g vs. 670.86±44.96 g, P<0.01). The serum Ca2+ concentration was higher in the H-8 group and H-18 group compared to that in the control group (H-8 group vs. L-8 group: 2.48±0.09 mmol/L vs. 2.38±0.07 mmol/L, P<0.05; H-18 group vs. L-18 group: 2.55±0.11 mmol/L vs. 2.13±0.27 mmol/L, P<0.05). No statistically significant difference was observed in the concentration of P3+. Bone metabolism indicator cross-linked carboxy-terminal telopeptide of type Ⅰ collagen (CTX-Ⅰ) was significantly increased in all high-altitude groups compared to the low-altitude groups (H-4 group vs. L-4 group: 1.44±0.08 ng/mL vs. 0.70±0.13 ng/mL, P<0.01; H-8 group vs. L-8 group: 1.52±0.10 ng/mL vs. 0.75±0.10 ng/mL, P<0.01; H-18 group vs. L-18 group: 2.70±0.13 ng/mL vs. 1.94±0.15 ng/mL, P<0.01). In addition, CT results showed a decrease in bone volume fraction of trabecular bone in the three high-altitude groups (H-4 group vs. L-4 group: 7.48±2.35% vs. 10.40±2.93%, P<0.05; H-8 group vs. L-8 group: 7.17±2.68% vs. 10.09±2.95%, P<0.05; H-18 group vs. L-18 group: 2.90±2.91% vs. 8.68±4.11%, P<0.01), and increased trabecular separation in the three high-altitude groups (H-4 group vs. L-4 group: 0.70±0.12 mm vs. 0.60±0.06 mm, P<0.05; H-8 group vs. L-8 group: 0.68±0.07 mm vs. 0.59±0.05 mm, P<0.01; H-18 group vs. L-18 group: 0.80±0.09 mm vs. 0.70±0.09 mm, P<0.05). TRAP staining showed an increase in osteoclasts in the H-4 and H-18 groups. Western blot results indicated an increase in the expression of receptor activator of nuclear factor-κB ligand (RANKL) and hypoxia inducible factor-1α (HIF-1α) in high-altitude environment, while the expression of osteoprotegerin (OPG) was inhibited.
    Conclusion The impact of high-altitude environment on rat femurs is characterized primarily by a reduction in trabecular bone mass and damage to bone microstructure.

     

/

返回文章
返回