欢迎来到《四川大学学报(医学版)》 2025年4月1日 星期二

颞下经小脑幕入路的显微解剖学研究

程进超, 王其福, 李陈, 荣军, 李廷政, 李敏, 白瑞军

程进超, 王其福, 李陈, 等. 颞下经小脑幕入路的显微解剖学研究[J]. 四川大学学报(医学版), 2024, 55(2): 290-296. DOI: 10.12182/20240360506
引用本文: 程进超, 王其福, 李陈, 等. 颞下经小脑幕入路的显微解剖学研究[J]. 四川大学学报(医学版), 2024, 55(2): 290-296. DOI: 10.12182/20240360506
CHENG Jinchao, WANG Qifu, LI Chen, et al. Microanatomical Investigation of the Subtemporal Transtentorial Approach[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(2): 290-296. DOI: 10.12182/20240360506
Citation: CHENG Jinchao, WANG Qifu, LI Chen, et al. Microanatomical Investigation of the Subtemporal Transtentorial Approach[J]. Journal of Sichuan University (Medical Sciences), 2024, 55(2): 290-296. DOI: 10.12182/20240360506

颞下经小脑幕入路的显微解剖学研究

基金项目: 安徽省临床医学研究转化专项(No. 202204295107020060)资助
详细信息
    通讯作者:

    白瑞军: E-mail:bairuijuncola0723@suda.edu.cn

Microanatomical Investigation of the Subtemporal Transtentorial Approach

More Information
  • 摘要:
    目的 

    研究颞下经小脑幕入路到脑干侧方的显微解剖结构,为脑干侧方、环池、岩斜区域临床手术提供解剖学资料。

    方法 

    在8例(16侧)发育正常成人尸头标本上进行颞下经小脑幕入路解剖学研究,尸头偏向一侧以颧弓根部为最高点,耳廓上方行马蹄形切口,以颧弓中点为切口前端,后缘达横窦中外侧三分之一处,皮瓣翻向颞部。去除骨瓣后,在显微镜下剔除蛛网膜及软脑膜,观察手术入路的暴露范围,明确途径中相关神经及血管的位置关系,对重要结构进行拍照及测量相关参数。

    结果 

    颧弓根部上缘可准确定位中颅窝底,10例成年人颅骨标本的星点至乳突尖部、星点至外耳道上脊、顶乳突缝前角至外耳道上脊、顶乳突缝前角至星点的平均距离分别为47.23 mm、45.27 mm、26.16 mm、23.08 mm。颞下入路在切开小脑幕后可充分暴露上至后床突下至岩骨脊、弓状隆起的区域,可以处理中斜坡、环池、中脑和桥脑腹侧面或外侧面的病变,并可通过颧骨切除扩大幕上的显露区域,岩骨磨除技术扩大幕下的显露范围,其中滑车神经全长、距小脑幕缘的距离、在小脑幕夹层中走形长度、穿入幕下处距离岩骨脊的距离分别为(16.95±4.74) mm、(1.27±0.73) mm、(5.72±1.37) mm、(4.51±0.39) mm。 通过后床突或弓状隆起作为定位安全打开小脑幕,动眼神经可作为解剖标志定位大脑后动脉和小脑上动脉。

    结论 

    通过显微解剖学研究,可明确颞下经小脑幕入路的暴露范围、术中的难点,有利于临床医师精准安全地规划手术方式,降低手术并发症。

     

    Abstract:
    Objective 

    To study the microanatomic structure of the subtemporal transtentorial approach to the lateral side of the brainstem, and to provide anatomical information that will assist clinicians to perform surgeries on the lateral, circumferential, and petroclival regions of the brainstem.

    Methods 

    Anatomical investigations were conducted on 8 cadaveric head specimens (16 sides) using the infratemporal transtentorial approach. The heads were tilted to one side, with the zygomatic arch at its highest point. Then, a horseshoe incision was made above the auricle. The incision extended from the midpoint of the zygomatic arch to one third of the mesolateral length of the transverse sinus, with the flap turned towards the temporal part. After removing the bone, the arachnoid and the soft meninges were carefully stripped under the microscope. The exposure range of the surgical approach was observed and the positional relationships of relevant nerves and blood vessels in the approach were clarified. Important structures were photographed and the relevant parameters were measured.

    Results 

    The upper edge of the zygomatic arch root could be used to accurately locate the base of the middle cranial fossa. The average distances of the star point to the apex of mastoid, the star point to the superior ridge of external auditory canal, the anterior angle of parietomastoid suture to the superior ridge of external auditory canal, and the anterior angle of parietomastoid suture to the star point of the 10 adult skull specimens were 47.23 mm, 45.27 mm, 26.16 mm, and 23.08 mm, respectively. The subtemporal approach could fully expose the area from as high as the posterior clinoid process to as low as the petrous ridge and the arcuate protuberance after cutting through the cerebellar tentorium. The approach makes it possible to handle lesions on the ventral or lateral sides of the middle clivus, the cistern ambiens, the midbrain, midbrain, and pons. In addition, the approach can significantly expand the exposure area of the upper part of the tentorium cerebelli through cheekbone excision and expand the exposure range of the lower part of the tentorium cerebelli through rock bone grinding technology. The total length of the trochlear nerve, distance of the trochlear nerve to the tentorial edge of cerebellum, length of its shape in the tentorial mezzanine, and its lower part of entering into the tentorium cerebelli to the petrosal ridge were (16.95±4.74) mm, (1.27±0.73) mm, (5.72±1.37) mm, and (4.51±0.39) mm, respectively. The cerebellar tentorium could be safely opened through the posterior clinoid process or arcuate protrusion for localization. The oculomotor nerve could serve as an anatomical landmark to locate the posterior cerebral artery and superior cerebellar artery.

    Conclusion 

    Through microanatomic investigation, the exposure range and intraoperative difficulties of the infratemporal transtentorial approach can be clarified, which facilitates clinicians to accurately and safely plan surgical methods and reduce surgical complications.

     

  • 骨质疏松症(osteoporosis,OP)是以骨量减少、微结构破坏和骨组织退化为特征的代谢性骨病变,可影响骨的质量和强度、增加骨折风险,导致慢性疼痛、影响肌肉和骨骼系统功能[1],降低患者生活质量。OP的发生发展是内分泌系统、免疫系统、神经系统等多组织多器官功能的紊乱,OP与NEI网络密切相关并可从脾肾进行论治[2]。骨代谢指标能早期敏感反映患者骨形成与骨吸收情况,可早期评判骨代谢情况[3]。固本增骨方为临床经验方,我们的前期实验研究[4]证实,该方能调节去卵巢大鼠下丘脑、垂体、脾脏、股骨和肾上腺组织游离[Ca2+]i的变化水平,而促进成骨细胞的骨形成过程。本研究拟采用切除雌性大鼠双侧卵巢的方法建立骨质疏松动物模型,给予固本增骨方进行干预,旨在观察去势大鼠骨代谢和骨微结构的改善情况。

    SPF级SD大鼠60只,雌性,(180±20) g,甘肃中医药大学动物实验中心提供;动物合格证号:合格证号SCXK(甘)2011-0001;实验设施合格证号:SYXK(甘)2015-0005;本实验遵守国家健康与医学研究委员会(NHNRC)动物道德准则,并经甘肃中医药大学动物实验伦理委员会批准。

    固本增骨方(Guben Zenggu Decoction,GBZG):炙黄芪40 g,白条党参12 g,岷当归12 g,炙淫羊藿15 g,烫狗脊12 g,盐补骨脂12 g,购于甘肃中医药大学附属医院中药房。取固本增骨方药材加8倍量的水,提取3次,每次1 h,浓缩至1:1,减压干燥,恒重,粉碎。制得浓缩药粉。固本增骨方浓缩药粉1 g=3.33 g原生药。戊酸雌二醇片(补佳乐,拜耳医药保健有限公司广州分公司,批号:208A);水合氯醛250 g/瓶(上海展云化工有限公司,生产批号:20151023);注射用青霉素钠160 U/支(华北制药股份有限公司,生产批号:201248)。

    大鼠雌激素(E2)、骨特异性碱性磷酸酶(BALP)、骨钙素(BGP)、Ⅰ型前胶原羧基端前肽(PICP)、Ⅰ型胶原羧基端交联端肽(ICTP)、抗酒石酸酸性磷酸酶-5b(TRAP-5b)试剂盒,均购自上海蓝基(BlueGene)生物科技有限公司,批号20161101。连续波长酶标仪(美国Bio-Rad公司,型号:Benchmark Plus),实验动物微型CT影像系统(西门子Inveon,德国)。

    60只大鼠适应性喂养10 d后,随机分为空白对照组(不做任何处理),模型对照组,戊酸雌二醇组,固本增骨方高、中、低剂量组,每组10只。除空白对照组外,其余大鼠均采用去卵巢法复制骨质疏松模型:10%水合氯醛溶液腹腔注射麻醉,成功后将大鼠俯卧位固定于手术台,术区剪毛、碘伏消毒皮肤,经背部正中切口入路切除双侧卵巢后,充分止血后逐层缝合切口,乙醇消毒,术后3 d连续臀肌注射青霉素预防感染。

    术后3月,各组确定骨质疏松动物模型成功[4]后分组进行灌胃给药治疗。固本增骨方低、中、高剂量组按人、鼠体型系数折算为成人等效剂量(生药含量分别为2.3 g/kg、4.6 g/kg、9.2 g/kg,并以每千克体质量10 mL蒸馏水稀释,制成混悬液于相应组灌胃),空白对照组和模型对照组以等剂量生理盐水灌胃,戊酸雌二醇组按人鼠等效剂量给予戊酸雌二醇,每日90 μg/kg,每日1次,持续灌胃12周。

    所有动物用药干预12周后,禁食水12 h,腹腔麻醉后心脏取血2 mL,严格按照试剂盒说明书运用酶联免疫吸附法检测大鼠血清E2、BGP、BALP、ICTP、PICP、TRAP-5b质量浓度。

    解剖分离右侧股骨标本,剔除标本周围肌肉、韧带等软组织,进行Micro-CT扫描和三维重建。将处理好的大鼠右侧股骨标本放入Micro-CT仪(QuantumGX perkinelmer),对股骨远端干骺端进行射线扫描。实验参数为:电压90 kV;电流88 μA;扫描时间14 min。分辨率:26 μm。扫描完成后,选取股骨远端干骺端至松质骨的近侧顶端为体积感兴趣区域(volume of interest,VOI),涵盖股骨远端的松质骨,进行三维重组,提取图像信息。扫描数据采用ABA软件(advanced bone analysis)进行骨组织计量学分析,获得松质骨微结构参数。主要参数包括:相对骨体积分数(bone volume/total volume,BV/TV),以%表示;骨小梁厚度(trabecular thickness,Tb.Th),以μm表示;骨小梁数量(trabecular number,Tb.N),以1/mm表示;骨小梁分离度(trabecular separation,Tb.Sp),以mm表示;结构模型指数(structure model index,SMI),测算骨骼表面的曲率,以描述板状骨小梁和杆状骨小梁的程度;连接密度(connection density,Conn.D)。使用Micview软件进行三维重建,获得可视化效果的三维立体图像。所有显微Micro-CT扫描、VOI选取及软件分析等操作,由同一位操作者完成,操作者对实验内容单盲。

    计量资料均以x±s表示。组间数据分别采用独立样本t检验和单因素方差分析,P<0.05为差异有统计学意义。

    表 1。与空白对照组比较,模型对照组大鼠E2、BALP含量降低(P<0.05),BGP、ICTP、PICP、TRAP-5b含量升高(P<0.05);给予药物干预后,与模型对照组相比,戊酸雌二醇组和固本增骨方各组E2、BALP均增高(P<0.05),BGP、ICTP、PICP、TRAP-5b含量均下降(P<0.05);且高剂量组优于低剂量组,差异有统计学意义(P<0.05)。

    表  1  各组大鼠全身骨代谢指标比较
    Table  1.  Bone metabolism indices in rats
    Group n E2/
    (ng/mL)
    BALP/
    (ng/mL)
    BGP/
    (ng/mL)
    ICTP/
    (ng/mL)
    PICP/
    (ng/mL)
    TRAP-5b/
    (ng/mL)
    Control 10 50.88±3.56 22.02±2.93 20.90±1.49 40.33±3.80 20.91±1.84 16.99±2.14
    Model control 10 21.08±2.99* 17.87±2.64* 42.60±2.65* 87.07±2.44* 44.65±1.21* 41.99±2.96*
    Estradiol valerate 10 52.13±3.13 22.11±2.84 19.12±2.13 39.78±2.00 21.87±2.03 18.08±1.79
    GBZG low dose 10 40.53±3.25 24.59±2.59 29.93±2.26 53.07±2.36 28.90±1.94 27.01±1.85
    GBZG medium dose 10 45.68±3.02 25.62±2.86 25.34±2.32 48.56±2.34 24.38±1.87 21.63±1.75
    GBZG high dose 10 47.36±3.41▲, △ 29.81±2.52▲, △ 23.42±2.51▲, △ 42.13±2.04▲, △ 22.93±1.95▲, △ 19.13±1.58▲, △
    *P<0.05, vs. control group;▲P<0.05, vs. model control group; △P<0.05, vs. GBZG low dose group
    下载: 导出CSV 
    | 显示表格

    表 2。与空白对照组比较,大鼠造模后BV/TV、Tb.Th、Tb.N及Conn.D均下降(P<0.05);而Tb.Sp和SMI则升高(P<0.05)。药物干预后,与模型对照组相比,戊酸雌二醇组和固本增骨方各组相对BV/TV、Tb.Th、Tb.N及Conn.D升高(P<0.05);而Tb.Sp、SMI则降低(P<0.05);且固本增骨方高剂量组与低剂量组差异有统计学意义(P<0.05)。

    表  2  不同组别大鼠股骨远端Micro-CT定量参数比较(n=10)
    Table  2.  Micro-CT quantitative parameters of distal femur in rats (n=10)
    Group (BV/TV)/
    %
    Tb.Th/
    μm
    Tb.N/
    cm-1
    Tb.Sp/
    cm-1
    SMI Conn.D/
    cm-3
    Control 0.39±0.06 54.30±9.36 6.32±0.88 0.35±0.02 0.66±0.04 107.29±8.22
    Model control 0.14±0.02* 31.28±8.27* 3.29±0.46* 0.67±0.08* 1.37±0.12* 49.98±5.77*
    Estradiol valerate 0.37±0.05 52.12±9.05 5.57±0.75 0.36±0.03 0.50±0.06 85.23±6.85
    GBZG low dose 0.28±0.04 44.09±7.10 4.93±0.64 0.44±0.03 0.86±0.07 90.40±6.02
    GBZG medium dose 0.34±0.05 48.53±8.14 5.52±0.65 0.39±0.02 0.56±0.05 91.31±6.97
    GBZG high dose 0.37±0.04▲, △ 52.96±8.98▲, △ 5.68±0.67▲, △ 0.37±0.02▲, △ 0.56±0.04▲, △△ 105.01±7.54▲, △
    *P<0.05, vs. control group;▲ P<0.05, vs. model control group; △ P<0.05, △△ P < 0.01,vs. GBZG low dose group
    下载: 导出CSV 
    | 显示表格

    6组大鼠的右股骨远端骨组织三维图像重建见图 1,三维重建图显示:模型对照组大鼠骨小梁数量稀少、骨小梁间隙增大、骨小梁分离明显、可见大片无骨连接的空洞,而戊酸雌二醇和固本增骨方不同剂量组骨小梁数量较模型对照组增多、骨小梁间隙变小、骨小梁分离不明显,其中以固本增骨方高剂量组较佳。

    图  1  股骨远端三维重建图
    Figure  1.  Three-dimensional reconstruction of distal femur
    A: Control group; B: Model control group; C: Estradiol valerate group; D: GBZG low dose group; E: GBZG medium dose group; F: GBZG high dose group

    随着全球人口的老龄化,OP在全球的发病率逐年增高,在我国OP发病率呈快速增长态势。绝经后骨质疏松症尤其令人关注,因它导致骨折的风险增加,对老年妇女的健康产生负面影响[5]。随着女性绝经或人体衰老的进程,机体脾肾渐衰,从而出现“肾虚”、“脾肾亏虚”的各种表现,针对此种情况可用补益脾肾中药以益气健脾、补肾壮骨。

    绝经后OP的发生主要由于绝经后机体雌激素水平低下,破骨细胞(osteoclast,OC)增殖、骨吸收增加导致的高转换型骨质疏松,其中E2是作用最强、最为主要的一种雌激素。血清E2浓度反映了机体雌激素水平。骨代谢标志物则体现了骨形成与骨吸收之间骨代谢的特点与水平,是评估骨质量的关键指标。研究认为[6]:BGP和BALP均由成骨细胞(osteoblast,OB)分泌产生,均可反映OB的活性,可作为骨形成的特异性指标。PICP和ICTP是反映胶原代谢的标志物,血清PICP和ICTP水平直接反映了Ⅰ型胶原的合成速度及骨转换的情况,PICP和ICTP升高说明Ⅰ型胶原合成加速,骨转换速率加快。PICP反映了骨形成的情况,ICTP则反映了骨吸收的情况[7]。TRAP-5b是骨吸收过程中OC释放的基质降解酶,是OC数量及功能活性的有效标志物[8]。本研究结果显示,模型对照组大鼠血清E2、BALP明显降低、而BGP、PICP、ICTP和TRACP-5b含量均明显增高,说明大鼠卵巢切除后,雌激素水平下降,OC和OB活性均增强,骨转换速率加快,骨量流失,表现为“高转换型”。而经过用药干预后,与模型对照组相比,戊酸雌二醇组(戊酸雌二醇为天然雌二醇的戊酸盐,具有雌二醇的药理作用,在老年女性骨质疏松患者几乎都伴有雌激素减少,而戊酸雌二醇对骨丢失有预防作用,所以本研究选择戊酸雌二醇为阳性对照组[9-10])和固本增骨方各组血清E2、BALP明显升高、而BGP、PICP、ICTP和TRACP-5b含量均降低,且固本增骨方组呈量效依赖关系。

    Micro-CT是目前研究并分析骨微观结构的新兴技术,具有全面、直观、无破坏性等研究特征,是理想的研究骨微观结构形态学的工具[11]。本研究结果显示:与空白对照组比较,大鼠造模后BV/TV、Tb.Th、Tb.N及Conn.D均明显降低;而Tb.Sp和SMI则升高。提示卵巢切除大鼠骨质疏松;而经过固本增骨方治疗12周后,与模型对照组比较,戊酸雌二醇组和固本增骨方各组BV/TV、Tb.Th、Tb.N及Conn.D等参数明显上升,Tb.Sp和SMI则明显降低,骨微观结构明显改善。提示戊酸雌二醇和固本增骨方均具有不同程度对抗卵巢切除大鼠骨质疏松引起的骨微结构改变的作用;三维重建图显示:模型对照组大鼠骨小梁数量稀少,骨小梁间隙增大,骨小梁厚度降低,骨小梁分离明显,可见大片无骨连接之空洞,骨质消溶严重,呈现出破坏的微观构筑。而戊酸雌二醇组和固本增骨方不同剂量组的骨微结构较好,骨小梁数量增多,骨小梁间隙变小,骨小梁厚度增加,骨小梁分离不明显,骨质消溶不明显,且固本增骨方高剂量组比固本增骨方低剂量组在骨微结构方面更佳。

    固本增骨方是甘肃中医药大学宋敏教授经验方,由炙黄芪、白条党参、岷当归、炙淫羊藿、烫狗脊、盐补骨脂组成,方中君药炙黄芪能补气升阳,生津养血,敛疮生肌;臣药党参可补中益气、生津和胃之功效,与黄芪配伍增强黄芪健脾补气之效;当归补血活血,与党参共为臣药,辅助黄芪,以增后天气血生化之源,脾肾互补。补骨脂温肾助阳,淫羊藿补肾壮阳、强筋健骨,烫狗脊补肝肾、强腰膝,三药合用,则可温肾助阳、益精填髓、强腰壮骨,共为佐药。诸药合用,共取益气健脾、补肾壮骨、活血通络之功效,标本兼顾,有效缓解脾肾两虚型骨质疏松症状。本研究结果显示:固本增骨方可改善卵巢切除大鼠雌激素低下状态,抑制骨代谢紊乱,使骨转换速率下降,从而调节骨代谢高转换状态,预防骨量丢失;还可改善卵巢切除大鼠骨微结构,对抗骨质疏松样微观改变的发生。

  • 图  1   手术入路操作示意图:去除皮瓣,颞肌层面

    Figure  1.   Schematic diagram of the surgical approach: removal of the flap and temporalis muscle layer

    图  2   颅骨左侧图

    Figure  2.   Left side of the skull

    1, Zygomatic arch; 2, sphenosquamous suturae; 3, squamous suture; 4, mastoid process, temporal bone; 5, zygomatic bone; 6, external acoustic pore; 7, styloid process of the temporal bone.

    图  3   左侧颅底上面观

    Figure  3.   The top view of the left skull base

    1, Trigeminal nerve; 2, trigeminal ganglion; 3, ophthalmic nerve; 4, maxillary nerve; 5, mandibular nerve; 6, oculomotor nerve; 7, trochlea nerve; 8, optic nerve; 9, superior cerebellar artery; 10, posterior cerebral artery; 11, tentorium cerebelli; 12, internal carotid artery; 13, greater petrosal nerve; 14, anterior clinoid process; 15, arcuate eminence.

    图  4   左侧中颅底侧后方图

    Figure  4.   The Lateral posterior view of the left middle skull base

    1, Trigeminal nerve; 2, trigeminal ganglion; 3, ophthalmic nerve; 4, maxillary nerve; 5, mandibular nerve; 6, oculomotor nerve; 7, trochlea nerve; 8, optic nerve; 9, superior cerebellar artery; 10, cerebellum; 11, tentorium cerebelli; 12, internal carotid artery; 13, greater petrosal nerve; 14, facial nerve; 15, arcuate eminence.

    图  5   左侧中颅窝底解剖图

    Figure  5.   The anatomical diagram of base upon the left middle fossa

    1, Trigeminal ganglion; 2, ophthalmic nerve; 3, maxillary nerve; 4, mandibular nerve; 5, greater petrosal nerve; 6, trochlea nerve; 7, oculomotor nerve; 8, optic nerve; 9, olfactory nerve; 10, internal carotid artery; 11, anterior cerebral artery; 12, internal carotid artery petrosal segment; 13, posterior cerebral artery; 14, superior cerebellar artery; 15, arcuate eminence.

    图  6   左侧中颅窝颅底解剖图

    Figure  6.   The anatomy of skull base upon the left middle cranial fossa

    1, Trigeminal ganglion; 2, ophthalmic nerve; 3, maxillary nerve; 4, mandibular nerve; 5, greater petrosal nerve; 6, trochlea nerve; 7, oculomotor nerve; 8, optic nerve; 9, olfactory nerve; 10, internal carotid artery; 11, anterior cerebral artery; 12, internal carotid artery petrosal segment; 13, posterior cerebral artery.

    图  7   右侧颅底灌注标本图

    Figure  7.   Right skull base perfusion specimen

    1, Internal carotid artery; 2, optic nerve; 3, optic chiasma; 4, anterior cerebral artery; 5, anterior choroidal artery; 6, posterior communicating artery; 7, posterior cerebral artery; 8, oculomotor nerve; 9, trochlea nerve; 10, superior cerebellar artery; 11, tentorium cerebelli; 12, arcuate eminence; 13, superior petrosal sinus.

    图  8   右侧中颅底灌注标本解剖图

    Figure  8.   The anatomy of right middle skull base perfusion specimen

    1, Internal carotid artery; 2, optic nerve; 3, optic chiasma; 4, anterior cerebral artery; 5, anterior choroidal artery; 6, posterior communicating artery; 7, posterior cerebral artery; 8, oculomotor nerve; 9, trochlear nerve; 10, superior cerebellar artery; 11, tentorium; 12, arcuate eminence; 13, superior petrosal sinus; 14, mesencephalon; 15, pons.

    图  9   右侧中颅底灌注标本侧方图

    Figure  9.   The lateral view of right middle skull base perfusion specimen

    1, Oculomotor nerve; 2, internal carotid artery; 3, posterior cerebral artery; 4, trigeminal nerve; 5, trochlear nerve; 6, cavernous sinus; 7, ophthalmic nerve; 8, maxillary nerve; 9, mandibular nerve; 10, sinuses petrosus superior.

    图  10   小脑侧后方灌注标本图

    Figure  10.   Posterior perfusion specimen of cerebellar side

    1, Great cerebral vein; 2, trigeminal nerve; 3, trochlear nerve; 4, petrosa vein; 5, sinuses petrosus superior; 6, oculomotor nerve; 7, superior cerebellar artery.

    表  1   颞部外侧面骨性结构的距离(n=10)

    Table  1   The distance of lateral temporal bony structure (n=10)

    StructureMean value/mmMeasurement value range/mm
    Star point to apex of mastoid47.2340.79-59.41
    Star point to superior ridge of meatus externa45.2743.41-50.28
    Anterior angle of parietomastoid suture to superior ridge of external auditory meatus26.1620.02-30.21
    Anterior angle of parietomastoid suture to star point23.0816.12-25.69
    下载: 导出CSV

    表  2   后床突到各结构位置的距离(n=16)

    Table  2   Distance of rear bed process to each structural position (n=16)

    StructureMean value/
    mm
    Measurement
    value range/mm
    The trochlear nerve penetrating the
     entrance to the tentorium
    15.3612.48-17.76
    Posterior cerebral artery4.353.23-6.71
    Superior cerebellar artery5.713.42-7.97
    Posterior communicating artery3.172.31-5.18
    下载: 导出CSV
  • [1]

    RUDER L, SCHINA R, KANODIA H, et al. A functional map for diverse forelimb actions within brainstem circuitry. Nature,2021,590(7846): 445–450. doi: 10.1038/s41586-020-03080-z.

    [2]

    ABLA A A, LEKOVIC G P, GARRETT M, et al. Cavernous malformations of the brainstem presenting in childhood: surgical experience in 40 patients. Neurosurgery,2010,67(6): 1589–1598. doi: 10.1227/NEU.0b013e3181f8d1b2.

    [3]

    SCHACKERT G, LENK M, KIRSCH M, et al. Surgical results of 158 petroclival meningiomas with special focus on standard craniotomies. J Neurooncol,2022,160(1): 55–65. doi: 10.1007/s11060-022-04105-5.

    [4]

    XU Z, WANG W, ZHANG J, et al. Subtemporal-anterior transtentoral approach to middle cranial fossa microsurgical anatomy. J Craniofac Surg,2014,25(6): 2220–2222. doi: 10.1097/scs.0000000000001073.

    [5]

    CAVALCANTI D D, MORAIS B A, FIGUEIREDO E G, et al. Accessing the anterior mesencephalic zone: orbitozygomatic versus subtemporal approach. World Neurosurg,2018,119: e818–e824. doi: 10.1016/j.wneu.2018.07.272.

    [6]

    TANG Y, WANG H D, MA C Y, et al. Quantitative anatomic comparison of the extended pterional transtemporal transtentorial approach and the subtemporal transtentorial approach to the petroclival region. Turk Neurosurg,2015,25(1): 9–15. doi: 10.5137/1019-5149.Jtn.7450-13.1.

    [7] 刘庆良, 王忠诚, 张俊廷. 颞枕入路Labbe静脉术中结扎术后失语分析. 中华神经外科杂志,1997,13(2): 34–36. doi: 10.3760/j.issn:1001-2346.1997.02.015.

    LIU Q L, WANG Z C, ZHANG J T. Analysis of speech with the Labbe vein ligated in tempoccipital operation. Chin J Neurosurg,1997,13(2): 34–36. doi: 10.3760/j.issn:1001-2346.1997.02.015.

    [8]

    CANDANEDO C, MOSCOVICI S, SPEKTOR S. The infratranstentorial subtemporal approach (ITSTA): a valuable skull base approach to deep-seated non-skull base pathology. Acta Neurochir (Wien),2019,161(11): 2335–2342. doi: 10.1007/s00701-019-04050-9.

    [9] 王轩, 佟小光. 联合经岩入路手术中相关静脉结构及硬膜的处理策略. 中华神经外科杂志,2023,39(12): 1189–1194. doi: 10.3760/cma.j.cn112050-20230311-00071.

    WANG X, TONG X G. Combined with the management strategy of related venous structures and dura mater in the transpetrosal approach. Chin J Neurosurg,2023,39(12): 1189–1194. doi: 10.3760/cma.j.cn112050-20230311-00071.

    [10]

    GARCÍA-PÉREZ D, ABARCA J, GONZÁLEZ-LÓPEZ P, et al. A frontal route to middle and posterior cranial fossa: quantitative study for the lateral transorbital endoscopic approach and comparison with the subtemporal approach. World Neurosurg,2022,167: e236–e250. doi: 10.1016/j.wneu.2022.07.129.

    [11]

    JOO W, RHOTON A L, Jr. Microsurgical anatomy of the trochlear nerve. Clin Anat,2015,28(7): 857–864. doi: 10.1002/ca.22602.

    [12] 李学民, 书国伟, 王勇. 颞下经小脑幕入路至上岩斜区应用解剖研究. 中国临床神经外科杂志,2009,14(4): 219–221. doi: 10.13798/j.issn.1009-153x.2009.04.003.

    LI X M, SHU G W, WANG Y. Study of applied anatomy related to neurosurgery through subtemporal transtentorial approach to superior petroclival region. Chin J Clin Neurosurg,2009,14(4): 219–221. doi: 10.13798/j.issn.1009-153x.2009.04.003.

    [13] 陈永汉, 白锡波, 田耀辉, 等. 经颞下入路对基底动脉顶端区域显微解剖研究. 脑与神经疾病杂志,2013,21(2): 145–148. doi: 10.3969/j.issn.1006-351X.2013.02.021.

    CHEN Y H, BAI X B, TIAN Y H, et al. The microsurgical anatomy study of basilar artery apex via subtcmporal approach. J Brain Ner Dis,2013,21(2): 145–148. doi: 10.3969/j.issn.1006-351X.2013.02.021.

    [14]

    KIM S M, PAEK S H, LEE J H. Infratemporal fossa approach: the modified zygomatico-transmandibular approach. Maxillofac Plast Reconstr Surg,2019,41(1): 3. doi: 10.1186/s40902-018-0185-x.

    [15]

    KIM M, PARK S K, LEE S, et al. Prevention of superior petrosal vein injury during microvascular decompression for trigeminal neuralgia: operative nuances. J Neurol Surg B Skull Base,2022,83(Suppl 2): e284–e290. doi: 10.1055/s-0041-1725036.

    [16]

    YOKOSAKO S, KIKUCHI A, OHBUCHI H, et al. Venous flow conversion technique for sacrificing the superior petrosal vein during microvascular decompression for trigeminal neuralgia. Oper Neurosurg (Hagerstown),2022,23(4): e232–e236. doi: 10.1227/ons.0000000000000333.

    [17]

    KELEŞ A, ARMSTRONG S A, SAYYAHMELLI S, et al. Microsurgical resection of a large petroclival meningioma via translabyrinthine approach combined with middle fossa craniotomy. Neurosurg Focus Video,2022,6(2): V11. doi: 10.3171/2022.1.Focvid21253.

    [18]

    OGIWARA T, GOTO T, KUSANO Y, et al. Subtemporal transtentorial approach for recurrent trigeminal neuralgia after microvascular decompression via the lateral suboccipital approach: case report. J Neurosurg,2015,122(6): 1429–1432. doi: 10.3171/2014.10.Jns132643.

    [19]

    Von RHEIN B, NELLES M, URBACh H, et al. Neuropsychological outcome after selective amygdalohippocampectomy: subtemporal versus transsylvian approach. J Neurol Neurosurg Psychiatry,2012,83(9): 887–893. doi: 10.1136/jnnp-2011-302025.

    [20]

    LAMKI T, SALMA A, BAIDYA N, et al. Path to the interpeduncular fossa: anatomical comparison of endoscopic-assisted versus standard subtemporal approach. J Neurol Surg B Skull Base,2012,73(4): 261–264. doi: 10.1055/s-0032-1312717.

    [21]

    SANCHEZ CORREA T E, CEJA D G, MENDEZ-ROSITO D. Subtemporal approach for the resection of a midbrain cavernous malformation: evaluation of safe surgical corridors. Neurosurg Focus Video,2019,1(1): V1. doi: 10.3171/2019.7.FocusVid.19135.

    [22]

    LANZINO G, CANNIZZARO D, VILLA S L. Subtemporal approach for distal basilar occlusion for giant aneurysm. Nuances and advantages of the subtemporal approach. Neurosurg Focus,2015,38(Video Suppl1): Video5. doi: 10.3171/2015.V1.Focus14536.

    [23]

    RHOTON A L. The temporal bone and transtemporal approaches. Neurosurgery,2000,47(3): S211–S265. doi: 10.1097/00006123-200009001-00023.

© 2024《四川大学学报(医学版)》编辑部
cc

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0

图(10)  /  表(2)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  59
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-03-07
  • 发布日期:  2024-03-19
  • 刊出日期:  2024-03-19

目录

/

返回文章
返回