An Integrated Audio-Visual-Olfactory Virtual Reality False Feeding Device: Research, Development, and Design
-
摘要:目的 为解决管饲或单纯口服的肠内营养供给手段,缺少食物色香味的感官刺激的问题,自主研发一款沉浸式集成视听嗅觉的虚拟现实(virtual reality, VR)假饲装置,并进行设备可用性测试。方法 通过护理+机械+计算机多学科合作方式,参考临床患者胃管、氧气管安置等特点,进行3D建模打印气味盒外观框架,采用主流虚拟引擎工具Unity3d.5.x制作场景。该装置通过3种VR用餐场景、23种美食和舒适的用餐环境进行视觉刺激;通过播放咀嚼声音,模拟真实的进食步骤进行听觉刺激;通过自主研发嗅觉气味盒,喷发相应美食气味进行嗅觉刺激。产生设备样机后,纳入10例患者行使用者设备可用性主观评价。结果 成功研发一款集成视听嗅觉刺激为一体的VR假饲装置。在视觉评价方面,全部使用者评价视野清晰、实现无阻挡,且菜单节目能够跟随转动, 8人认为场景真实;在听觉评价方面,所有使用者认为声音大小适宜,且在食物靠近时有咀嚼音;在嗅觉评价方面, 9人在食物靠近时闻到气味,且认为气味真实或部分真实,设备总体使用感受方便,所有使用者均认为该设备呈现清晰、能稳定流畅地运行。所有使用者均未出现头晕等不良反应。结论 本装置样机通过临床患者可用性主观测试,能顺利呈现视觉、听觉、嗅觉刺激,有效扩展了VR在医疗领域的应用前景,未来可应用于外科手术、进食障碍、肥胖和食欲不振患者等不能经口进食的群体,为促进外科患者快速康复,提升临床体验提供新思路。Abstract:Objective To resolve the problem of the lack of sensory stimulation from the colors and aromas of food when patients are given enteral nutrition support by tube feeding or simple oral administration, an immersive virtual reality (VR) sham feeding device integrating audio, visual, and olfactory sense perceptions was developed independently and the usability of the device was tested.Methods Relying on the multidisciplinary cooperation of nursing, mechanical engineering, and computer science and using as a reference the characteristics of gastric tube and oxygen tube placement in clinical patients, we carried out 3D modeling and printing of the exterior framework of the odor box. Unity 3d.5.x, a mainstream virtual engine tool, was used to create scenarios. The device could create visual stimulation through 3 VR dining scenarios, 23 kinds of food, and comfortable dining environment. The sound of chewing was played to simulate the dining process and provide auditory stimulation. Through the independently researched and developed olfactory odor box, corresponding food aromas were sprayed out for olfactory stimulation. After the equipment prototype was created, 10 patients were recruited to perform users' subjective evaluation of the usability of the equipment.Results A VR sham feeding device integrating audio-visual-olfactory stimulation was successfully developed. In the visual effect evaluation, all users commented that the vision was clear and unimpeded, and that the menu program could follow their rotation movement. Eight people considered the scenes to be rather realistic. In the auditory effect evaluation, all users stated that the volume of the sound was appropriate, and that they would hear a chewing sound being played when the food was approaching. In the olfactory effect evaluation, 9 people stated that they smelled the food aromas when the food was approaching, and that they thought the odor was real or partially real. On the whole, the equipment was convenient to use and all users thought that the equipment had clear presentation and could run stably and smoothly. No adverse reactions, such as dizziness, occurred in any users.Conclusion Successfully presenting visual, auditory, and olfactory stimuli, the prototype device passed the subjective usability test. The prototype device effectively expands the application prospects of VR in the medical field. In the future, it will be applied to patient populations, including surgical patients, patients with eating disorders, obesity, and loss of appetite, and other patients who cannot take in food through their mouths. The prototype device provides new ideas for promoting enhanced recovery after surgery and improving patient experience.
-
肠内营养(enteral nutrition, EN)可为无法满足经口摄入营养需求量的个体提供关键的常量和微量营养素,全球接受管饲的患者数量日渐增多,研究报道63.9%的创伤患者采用管饲或单纯口服的肠内营养供给手段[1-3]。人在经口进食时会依赖于视觉、听觉、嗅觉、触觉和味觉感官刺激,大脑神经元接受这些刺激,让患者获得美好的进食体验的同时,可通过迷走神经通路对胃肠道功能产生影响,继而促进消化和吸收。然而,临床常用管饲或单纯口服的肠内营养供给手段,缺少食物色香味的感官刺激,难以作用于脑-肠轴,不能有效调动大脑神经元诱导胃肠道相关生理反应及功能表达,这会导致肠内营养不耐受,患者发生胀气、恶心等不良反应[4]。经典生理学研究表明[5-6],非进食状态下的视觉、嗅觉刺激(条件反射刺激)能促进胃酸分泌和增加胃肠激素浓度,有利于消化道运动及消化液分泌。基于此,本研究团队提出针对临床非经口进食肠内营养患者的“假饲”新概念,即模拟经口进食状态,通过集成视听嗅觉感官刺激大脑神经元,诱导相关生理反应及功能表达,从而弥补管饲或单纯口服肠内营养供给手段存在的缺陷问题。
研究报道,虚拟现实(virtual reality, VR)技术是一种利用计算机及虚拟现实设备完成的沉浸式体验技术,已广泛应用于医学领域,例如缓解儿童围术期、牙科医疗过程和分娩过程的焦虑、疼痛等[7-8],也有研究者将VR技术应用于进食障碍,均取得良好效果[9-10]。基于VR技术沉浸式和互动式的特点,本研究拟通过视听嗅觉的VR技术完成“假饲”,弥补单纯或肠内营养缺乏的感官缺陷。研究发现,已有虚拟气味技术相关概念文献发表,例如,步进电机驱动式虚拟嗅觉气味生成装置、日本名古屋大学的套触觉和嗅觉相结合的感知系统和东京工业大学的全新的远程嗅觉再现的系统等[11-13],但仍无临床转化及应用案例。检索发现,目前国内外仍无基于视听嗅觉的VR假饲装置研发及应用报道。因此,为促进非进口进食肠内营养患者胃肠功能的快速康复,提高营养治疗效果,本研究自主研发集成视听嗅觉的VR假饲装置,并进行使用者设备可用性主观评价,现报道如下。
1. 设备和方法
1.1 集成视听嗅觉VR假饲装置硬件开发
VR硬件设备套件包括PICO头戴显示器(自带声音播放器)、PICO手柄、嗅觉气味盒(图1)、无线网关及配套护理推车组成,其中嗅觉气味盒、网关及护理推车均为自主研发。通过硬件集成设计和线路优化,开发嗅觉气味盒,实现了虚拟进食场景与食物气味释放的同步。具体研发方法如下:
为实现嗅觉交互功能,提升患者虚拟用餐真实感,设计一款能同步喷发气味的嗅觉气味盒。参考临床患者胃管、氧气管安置等特点,利用中望软件进行3D建模打印气味盒,嗅觉气味盒装置内部包含棉棒填塞孔、振荡波片(振荡频率160 K,气雾直径10 mm,气味喷发孔洞7 μm)、信号发送与接收器、电路板和滤片构成。嗅觉气味盒通过网关装置与电脑链接,网关中的2.4G接收模块发出信号后与主控制器链接,达到气味扩散的目的。为实现气味交互功能,将无线发射器与VR链接,不同场景使用不同气味盒,可通过VR程序将不同场景、不同物品的嗅探意图转化为向控制节点发送不同的命令,控制节点将命令转化为主电路板上不同通道的振荡信号以实现不同气味的触发,后者被大功率三极管进行能量放大,传递给超声晶片,将气味进行雾化。
1.2 集成视听嗅觉VR假饲装置软件开发
选择中餐厅、甜品店和水果店三3个场景进行开发,操作者可自由选择包含麻辣小龙虾、腊肉、麻辣豆干、冒菜、糖油果子、葱油煎饼、卡布奇诺、大麦茶、牛奶、提拉米苏和蛋糕等23种食品。具体研发方法如下。
1.2.1 脚本设计
设计场景脚本,根据临床实际情况,调研患者及医护人员在患者肠内营养期间期望看到的虚拟用餐场景,设计场景脚本,包括具体场景、对话、出现时长、菜品种类、呈现方式等。设计交互方式,每个场景配备服务员一名,设计患者与服务员交互方式,包括服务员形象、行动轨迹、交流内容与方式等,采用手柄点击选择模式进行。进行场景建模,采用主流虚拟引擎工具Unity3d.5.x制作,模型构建与真实物种1∶1比例,非拟人化、非漫画形象,仿真度高,虚拟场景中平面图片呈现采用PNG和JPEG格式展示。模型制作精度,单个模型的面数控制2000面以内。
1.2.2 视觉、听觉设计
食物模型构建制作模型材质带有阴影、高光、反射等效果贴图的烘焙处理,色彩冷暖、敏感保持一致;一个物件贴一张图,采用实物贴图,场景中连续贴图无明显缝隙。材质大小长宽像素为2的次方倍数,4096×4096>贴图大小≥1024×1024。动态食物模型采用逐帧模型构建,实现根据环境情况自动发生变化,例如:水、烟雾、太阳光晕等环境效果,加强现实场景模拟效果的真实性。患者通过PICO NEO3头盔进行观看用餐场景,实现单眼分辨率为1832×1920,串流新率72/90 Hz,视线角度98°。物体模型采用fbx或.3ds格式呈现,实现物体模型2000面以内,模型的中心点在模型中心位置。
患者在使用过程中,能听到吃、喝、嚼等细节声音,模拟真实的进食步骤。环境采取轻松的轻音乐,有利于精神放松,使用PICO头显设备自带扬声器播放。
1.2.3 嗅觉设计
嗅觉通过嗅觉气味盒、网关和模拟食物气味香水实现。嗅觉气味盒关键技术包括:①嗅探意图识别,即使用者将食物通过手柄夹取至嘴边时,嗅觉气味盒喷发相应气味;②信号解析与转化:当手柄靠近头显设备32 cm时,嗅觉气味盒将控制气味喷发的电信号转化为振荡信号,传递至气味盒中的超声晶片;③超声晶片高频雾化:超声晶片通过2.4 MHz高频振荡,将气味雾化至1~5 μm的微小气味颗粒;④虚拟现实场景联动:虚实结合,通过使使用者在虚拟现实世界中品尝美食也能闻到相对应真实食物气味的方式,在使用过程中,VR可帮助患者轻松切换各种场景,无缝体验不同的食物,在近乎真实的视听嗅觉刺激下完成营养供给过程。
气味选择与气味图书馆公司联合定制虚拟场景中食物气味(表1)。前期场景和食物气味选择基于网络大数据分析,选择最受大众欢迎的中餐和促进食欲的食物气味,分别设置中餐馆、水果店和糕点店3个场景,共23种气味。
表 1 气味浓度配比Table 1. Odor concentration ratioScenes Odour Original solution/drop Diluent/drop A Spicy crayfish 1 6 Dry bean salad 1 3 Xiangxi cured pork 1 3 Maocai 1 3 Scallion oil pancake 1 3 Sugared jelly fruit 1 3 Chinese food environment 1 3 B Peach 1 3 Citrus 1 3 Mango 1 3 Litchi 1 3 Pineapple 1 3 Watermelon 1 3 Green apple 1 3 Fruit store environment 1 3 C Cappuccino 1 3 Barley tea 1 3 Milk 1 3 Tiramisu 1 3 Cake 1 3 Strawberry ice cream 1 3 Graham cracker 1 3 Bakery environment 1 3 Three scenarios of a Chinese restaurant (A), a fruit store (B), and a bakery (C) were set up separately. 1.3 效果评价指标
设备样机产出后,招募10例临床患者行设备主观可用性评价,观察视听嗅觉能否顺利呈现,分别记录3种感官刺激具体呈现形式及患者主观感受。针对嗅觉气味盒软硬件适配程度,具体测试方法为使用者试闻不同梯度浓度气味,>80%使用者(8人)认为浓度适宜时,再记录该浓度参数(表1)。
1.4 受试者
患者纳入排除标准同下阶段临床试验。纳入标准:四川大学华西医院胃肠外科住院患者;年龄<80岁;能独立操作VR假饲集成装置;自愿参加本研究,签署知情同意书。排除标准:精神疾病、晕动症,如美尼尔氏综合征或耳石症等病史者;同时参与其他试验者。本研究已通过中国临床试验注册及四川大学华西医院生物伦理委员会批准,临床试验注册号ChiCTR2100051419、伦理批文号2021年审1087号。
后续临床试验按实验研究多个独立样本比较的秩和检验样本含量来计算,经文献回顾,参考既往在胃癌患者中采用加速康复外科或咀嚼口香糖等措施对术后首次排便时间、排气时间,分别在PASS15.0软件中进行计算。取估计样本量最大值每组45例(共设2组),考虑到研究对象脱落,按脱失率20%计算,需要100例,设备主观可用性评价作为临床试验预实验,选取10%受试者作为评估对象,即选择10人进行测验。
2. 结果
VR场景视角如图2所示,VR假饲设备视觉、嗅觉、听觉及设备主观评价见表2。在视觉评价方面,全部使用者评价视野清晰、实现无阻挡,且菜单节目能够跟随转动, 8人认为场景真实;在听觉评价方面,所有使用者认为声音大小适宜,且在食物靠近时有咀嚼音;在嗅觉评价方面, 9人在食物靠近时闻到气味,且认为气味真实或部分真实,设备总体使用感受方便,所有使用者均认为该设备呈现清晰、能稳定流畅地运行。所有使用者均未出现恶心、眩晕及呕吐等不良反应。
表 2 集成视听嗅觉VR装置样机感官主观评价(n=10)Table 2. Subjective sensory evaluation of the integrated audio-visual-olfactory VR prototype (n=10)Sense Indicator Subjective feelings Case Vision Is the vision clear? Clear 10 Is the field of vision blocked? No 10 Is the UI interface blocked? (Does the menu interface follow the player's rotation?) Followed 10 Is the scene realistic? Real 8 Auditory Is the sound clear? Clear 10 Is the sound volume appropriate? Appropriate 10 Do you hear the sound of chewing being played when the food is approaching? Yes 10 Olfaction Can you smell food when it's near? Yes 9 Does the smell feel real? All real 7 Part real 2 Not real 1 Overall experience Is the scene presented clearly? Clear 10 Does the device run stably during use? Yes 10 Does the device run smoothly during use? Yes 10 3. 讨论
本研究中,经生产样机进行临床测试和产品迭代后,开发完成的集成视听嗅觉VR假饲装置包括硬件设备(集成化治疗车、VR头显套装、嗅觉气味盒、网络设备)及软件(串流软件、头显套装支持软件、steam VR、自主虚拟场景)。其中VR头显套装通过沉浸式显示器和内置扬声器提供视觉和听觉辅助,呈现全景式用餐场景和咀嚼吞咽及环境音效提供视听觉刺激;自主研发的嗅觉气味盒能实现在虚拟场景中触发并在现实世界中嗅到相关气味的功能,从而较为完整地发挥沉浸式虚拟进食场景所带来的视听嗅觉感官刺激。目前已有VR应用于眼视光领域、床旁康复训练和辅助睡眠等医疗领域的报道[14-16];护理领域的VR设备主要针对护理教学、神经系统或肢体功能受损后康复训练、心理治疗和疼痛护理等应用[17-20]。但暂尚未见国内外有相关VR技术应用于经口进食受限患者,以保障机体维持正常的生理功能并提升生活质量的报道,本VR假饲装置的开发有望扩展VR在医疗领域的应用前景。
虚拟嗅觉研究的难点在于如何将想要表达的气味效果通过其他与之不相关的材料产生出来,并按照设计者的要求在固定的条件下以设定的浓度进行播放[21]。既往研究研发的虚拟气味产生装置多为外置体积较大的设备,且未与VR技术结合,难以让使用者产生真实的身临其境的感受。本VR假饲装置采用配套设计的嗅觉气味盒及虚拟就餐软件,能够让使用者在虚拟环境沉浸式进餐的过程中闻到相应气味,气味盒方便携带,不受周围环境限制,为提供视听嗅觉的沉浸式进食体验提供了基础。本VR假饲装置解决了多种食物气味模拟的技术难题,能根据操作者选择的食物喷发出相应气味。目前本VR假饲装置已完成软件研发、虚拟现实就餐场景制作以及嗅觉气味盒设计与制作,形成第三代成品,其应用方法已申请国家发明专利并授权(专利号:ZL 202010753133.1)。
有学者在为青少年神经性贪食症患者设计的虚拟就餐系统的研究中指出,虚拟就餐场景应具备在虚拟场景中的食物实现抓取、拿放和旋转等动作,在用户产生饮食想法的时候,需要用户可以模拟吃掉手里的食物;另外需要模拟真实的环境,并能够实现环境中相关功能[22]。本VR假饲装置通过1∶1配比食物和就餐场景进行建模,呈现真实就餐场景,满足上述食物呈现需求,能够实现食物多角度观看、模拟食物被夹取时动态呈现形式,患者可扣动扳机实现就餐场景的位移,按动场景中呼叫铃呼叫服务员进行互动。听觉模拟舒缓背景音乐、服务员互动声音以及咀嚼食物时的咀嚼音。研究指出,音乐用于调节日常生活中的情绪和唤醒,并在临床环境中促进身心健康和福祉[23]。因此增加使用者听觉刺激有望为其带来情绪缓和、增加其进食欲望。
本VR假饲装置样机测试效果良好,前期场景和食物气味选择基于网络大数据分析,后续可进行大范围临床患者进食需求调研,增加不同文化和饮食地区的场景和食物,后续研究中也将对受试者进行场景套餐之外的气味体验测评。针对该VR假饲装置的临床试验正在进行,待收集更多针对场景、气味体验的真实性数据、临床结局数据进行反馈后,将针对患者体验进行持续改进,深入进行产品的转化。未来有望应用于外科手术患者,促进外科患者安全、舒适、快速康复,提升患者体验提供新思路。后续将扩大应用至长期禁食患者、老龄期进食障碍患者、肥胖减肥患者、放化疗后食欲不佳者和社区厌食症等人群使用。
* * *
作者贡献声明 李卡和袁星竹负责初稿写作,李卡负责论文构思和经费获取,袁星竹和陈雨文负责设计研究方法,袁星竹负责调查研究,胡艳杰负责数据审编和研究项目管理,张卫华负责软件研发,洪瑞负责验证,杨婕负责监督指导和审读与编辑写作。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。
利益冲突 所有作者均声明不存在利益冲突
-
表 1 气味浓度配比
Table 1 Odor concentration ratio
Scenes Odour Original solution/drop Diluent/drop A Spicy crayfish 1 6 Dry bean salad 1 3 Xiangxi cured pork 1 3 Maocai 1 3 Scallion oil pancake 1 3 Sugared jelly fruit 1 3 Chinese food environment 1 3 B Peach 1 3 Citrus 1 3 Mango 1 3 Litchi 1 3 Pineapple 1 3 Watermelon 1 3 Green apple 1 3 Fruit store environment 1 3 C Cappuccino 1 3 Barley tea 1 3 Milk 1 3 Tiramisu 1 3 Cake 1 3 Strawberry ice cream 1 3 Graham cracker 1 3 Bakery environment 1 3 Three scenarios of a Chinese restaurant (A), a fruit store (B), and a bakery (C) were set up separately. 表 2 集成视听嗅觉VR装置样机感官主观评价(n=10)
Table 2 Subjective sensory evaluation of the integrated audio-visual-olfactory VR prototype (n=10)
Sense Indicator Subjective feelings Case Vision Is the vision clear? Clear 10 Is the field of vision blocked? No 10 Is the UI interface blocked? (Does the menu interface follow the player's rotation?) Followed 10 Is the scene realistic? Real 8 Auditory Is the sound clear? Clear 10 Is the sound volume appropriate? Appropriate 10 Do you hear the sound of chewing being played when the food is approaching? Yes 10 Olfaction Can you smell food when it's near? Yes 9 Does the smell feel real? All real 7 Part real 2 Not real 1 Overall experience Is the scene presented clearly? Clear 10 Does the device run stably during use? Yes 10 Does the device run smoothly during use? Yes 10 -
[1] 杨小锋, 王浩, 魏晓捷, 等. 浙江省重型颅脑创伤患者营养支持治疗的现状调查. 中华神经外科杂志,2017,33(7): 691–695. DOI: 10.3760/cma.j.issn.1001-2346.2017.07.011 [2] DOLEY J. Enteral nutrition overview. Nutrients,2022,14(11): 2180. DOI: 10.3390/nu14112180
[3] OJO O, KEAVENEY E, WANG X, et al. The effect of enteral tube feeding on patients' health-related quality of life: a systematic review. Nutrients,2019,11(5): 1046. DOI: 10.3390/nu11051046
[4] MOHAJIR W A, O'KEEFE S J, SERES D S. Disease-related malnutrition and enteral nutrition. Med Clin North Am,2022,106(5S): e1–e16. DOI: 10.1016/j.mcna.2022.10.002
[5] FINE L G, RIERA C E. Sense of smell as the central driver of pavlovian appetite behavior in mammals. Front Physiol,2019,10: 1151. DOI: 10.3389/fphys.2019.01151
[6] FELDMAN M, RICHARDSON C T. Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology,1986,90(2): 428–433. DOI: 10.1016/0016-5085(86)90943-1
[7] EIJLERS R, UTENS E M W J, STAALS L M, et al. Systematic review and meta-analysis of virtual reality in pediatrics: effects on pain and anxiety. Anesth Analg,2019,129(5): 1344–1353. DOI: 10.1213/ANE.0000000000004165
[8] ADDAB S, HAMDY R, THORSTAD K, et al. Use of virtual reality in managing paediatric procedural pain and anxiety: an integrative literature review. J Clin Nurs,2022,31(21/22): 3032–3059. DOI: 10.1111/jocn.16217
[9] RIVA G, MALIGHETTI C, SERINO S. Virtual reality in the treatment of eating disorders. Clin Psychol Psychother,2021,28(3): 477–488. DOI: 10.1002/cpp.2622
[10] FERRER-GARCIA M, PLA-SANJUANELO J, DAKANALIS A, et al. A randomized trial of virtual reality-based cue exposure second-level therapy and cognitive behavior second-level therapy for bulimia nervosa and binge-eating disorder: outcome at six-month followup. Cyberpsychol Behav Soc Netw,2019,22(1): 60–68. DOI: 10.1089/cyber.2017.0675
[11] 杨文珍, 余岭, 吴新丽, 等. 步进电机驱动式虚拟嗅觉气味生成装置: CN103926941B. (2016-02-17) [2023-03-21]. http://182.150.59.104:8888/https/77726476706e69737468656265737421fbf952d2243e635930068cb8/kcms2/article/abstract?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0IES_dQYC5QiRib7Ie6CXGhOw9dzg16UwY6vXdAdFvHZa3gtwZ8rYc_KW-ve81IbR&uniplatform=NZKPT. [12] HOSHINO S, ISHIBASHI Y, FUKUSHIMA N, et al. "QoE assessment in olfactory and haptic media transmission: Influence of inter-stream synchronization error," 2011 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR), Naples, FL, USA, 2011.
[13] NAKAIZUMI F, NOMA H, HOSAKA K, et al. "SpotScents: A Novel Method of Natural Scent Delivery Using Multiple Scent Projectors," in IEEE Virtual Reality Conference (VR 2006). Alexandria, VA, USA, 2006: 207-214.
[14] PENG L B, ZENG Y, WU Y G, et al. Virtual reality-based rehabilitation in patients following total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. Chin Med J (Engl),2022,135(2): 153–163. DOI: 10.1097/CM9.0000000000001847
[15] TRUIJEN S, ABDULLAHI A, BIJSTERBOSCH D, et al. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with parkinson disease, multiple sclerosis, and stroke: a systematic review and meta-analysis. Neurol Sci,2022,43(5): 2995–3006. DOI: 10.1007/s10072-021-05855-2
[16] LEE S Y, KANG J. Effect of virtual reality meditation on sleep quality of intensive care unit patients: a randomised controlled trial. Intens Crit Care Nurs,2020,59: 102849. DOI: 10.1016/j.iccn.2020.102849
[17] CHAN K, JIANG Y, CHOO W T, et al. Effects of exergaming on functional outcomes in people with chronic stroke: a systematic review and meta-analysis. J Adv Nurs,2022,78(4): 929–946. DOI: 10.1111/jan.15125
[18] BU X F, NG P, CHEN Q, et al. Effectiveness of virtual reality-based interventions in rehabilitation management of breast cancer survivors: protocol of a systematic review and meta-analysis. BMJ Open,2022,12(2): e053745. DOI: 10.1136/bmjopen-2021-053745
[19] PAPOLA D, OSTUZZI G, TEDESCHI F, et al. Comparative efficacy and acceptability of psychotherapies for panic disorder with or without agoraphobia: systematic review and network meta-analysis of randomised controlled trials. Br J Psychiatry,2022,221(3): 507–519. DOI: 10.1192/bjp.2021.148
[20] SARAGIH I D, TARIHORAN D, BATUBARA S O, et al. Effects of telehealth interventions on performing activities of daily living and maintaining balance in stroke survivors: a systematic review and meta-analysis of randomised controlled studies. J Clin Nurs,2022,31(19/20): 2678–2690. DOI: 10.1111/jocn.16142
[21] 杨海峰. 多感官交互火灾虚拟现实平台开发及其主体沉浸感评价研究. 北京: 清华大学, 2021. [22] 罗亚伟. 虚拟现实在青少年心理健康中的应用研究——以VR健康饮食系统为例. 北京: 北京林业大学, 2021. [23] SÄRKÄMÖ T. Cognitive, emotional, and neural benefits of musical leisure activities in aging and neurological rehabilitation: a critical review. Ann Phys Rehabil Med,2018,61(6): 414–418. DOI: 10.1016/j.rehab.2017.03.006

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0