欢迎来到《四川大学学报(医学版)》

超重/肥胖和血脂异常交互作用对西藏藏族人群高血压患病风险的影响

周亚希 熊海 钟怀昌 万洋 廖玉琪

周亚希, 熊海, 钟怀昌, 等. 超重/肥胖和血脂异常交互作用对西藏藏族人群高血压患病风险的影响[J]. 四川大学学报(医学版), 2023, 54(3): 585-590. doi: 10.12182/20230560504
引用本文: 周亚希, 熊海, 钟怀昌, 等. 超重/肥胖和血脂异常交互作用对西藏藏族人群高血压患病风险的影响[J]. 四川大学学报(医学版), 2023, 54(3): 585-590. doi: 10.12182/20230560504
ZHOU Ya-xi, XIONG Hai, ZHONG Huai-chang, et al. Effect of the Interaction Between Overweight/Obesity and Dyslipidemia on the Risk of Hypertension in Tibetan Population Living in Tibet[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 585-590. doi: 10.12182/20230560504
Citation: ZHOU Ya-xi, XIONG Hai, ZHONG Huai-chang, et al. Effect of the Interaction Between Overweight/Obesity and Dyslipidemia on the Risk of Hypertension in Tibetan Population Living in Tibet[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 585-590. doi: 10.12182/20230560504

超重/肥胖和血脂异常交互作用对西藏藏族人群高血压患病风险的影响

doi: 10.12182/20230560504
基金项目: 中央财政支持地方高校改革发展专项基金(No. 00060585、No. 00060695/051)和西藏阿里地区科技局科技计划项目(No. ALKJ-BJCZ-2019-02)资助
详细信息
    通讯作者:

    E-mail:xhxysq@126.com

Effect of the Interaction Between Overweight/Obesity and Dyslipidemia on the Risk of Hypertension in Tibetan Population Living in Tibet

More Information
  • 摘要:   目的  探讨超重/肥胖与血脂异常可能的交互作用,为高血压患病风险与超重/肥胖、血脂异常交互作用提供一定的证据。  方法  采用多阶段分层整群随机抽样方法,在西藏阿里地区、那曲市和山南市随机抽取研究人群,共纳入了4047名数据完整的藏族居民为调查对象,通过问卷获取调查对象的相关信息,并进行身高、体质量指数、血压测量及采集空腹静脉血等。采用多因素逻辑回归模型分析超重/肥胖和血脂异常与高血压的独立效应,分层分析和相加交互作用模型评价两因素交互作用对高血压患病风险的影响。  结果  西藏地区藏族居民高血压、超重/肥胖和血脂异常的总患病率分别为29.3%、46.2%和40.9%,超重/肥胖〔比值比(OR)=2.151 〕和血脂异常(OR=1.240)是高血压患病的危险因素。相加交互效应评价结果显示超重/肥胖和血脂异常对高血压的加法交互作用有统计学意义(P=0.028),协同指数为1.318。  结论  超重/肥胖和血脂异常是高血压患病的危险因素,两因素间存在相加交互作用。
  • 表  1  调查对象的基线特征

    Table  1.   Baseline data of the survey respondents

    VariableTotal/case or $ \bar x \pm s $ Hypertension/case (%) or $ \bar x \pm s $χ2/tP
    No (n=2861)Yes (n=1186)
    Sex 13.947 0.001
     Men 1688 1140 (67.5) 548 (32.5)
     Women 2359 1721 (73) 615 (27)
    Age/yr. 43.01±14.329 39.38±13.013 51.76±13.561 −26.737 <0.001
    Type of residence 0.933 0.818
     Cities and towns 237 170 (71.7) 67 (28.3)
     Rural area 2133 1515 (71.0) 618 (29.0)
     Pasturing area 1437 1012 (70.4) 425 (29.6)
     Farming and stockbreeding areas 240 164 (68.3) 76 (31.7)
    Highest education achieved 66.642 <0.001
     Illiterate 2857 1935 (67.7) 922 (32.3)
     Primary school 586 423 (72.2) 163 (27.8)
     Junior middle school 231 192 (83.1) 39 (16.9)
     Senior middle school 104 92 (88.5) 12 (11.5)
     Vocational high school/technical school 37 27 (73) 10 (27)
     Junior college 126 97 (77) 29 (23)
     Bachelor degree or above 106 95 (89.6) 11 (10.4)
    Employment status 25.915 <0.001
     Employed 1458 1076 (73.8) 382 (26.2)
     Retired 125 84 (67.2) 41 (32.8)
     Full-time equivalence 165 135 (81.8) 30 (18.2)
     Unemployed 98 62 (63.3) 36 (36.7)
    Farmers/herdsmen 2201 1504 (68.3) 697 (31.7)
    Marital status 63.373 <0.001
     Never married 523 428 (81.8) 95 (18.2)
     Married 3418 2370 (69.3) 1048 (30.7)
     Widowhood 43 33 (76.7) 10 (23.3)
     Divorced 52 20 (38.5) 32 (61.5)
     Other 11 10 (90.9) 1 (9.1)
    Annual gross income/CNY 1.848 0.870
     <12000 1068 765 (71.6) 303 (28.4)
     12000-19999 1409 983 (69.8) 426 (30.2)
     20000-59999 1343 952 (70.9) 391 (29.1)
     60000-99999 93 66 (71) 27 (29)
     100000-200000 80 59 (73.8) 21 (26.3)
     >200000 54 36 (66.7) 18 (33.3)
    Altitude 10.919 0.004
     <4500 1483 1011 (68.2) 472 (31.8)
     4500 1193 883 (74) 310 (26)
     >4500 1371 967 (70.5) 404 (29.5)
    Low income 0.076 0.783
     No 1152 818 (71) 334 (29)
     Yes 2895 2043 (70.9) 852 (29.4)
    Insurance 0.016 0.900
     No 125 89 (71.2) 36 (28.8)
     Yes 3922 2772 (70.7) 1150 (29.3)
    Physical exercise 13.569 0.009
     Almost never 2555 1772 (69.4) 783 (30.6)
     <1 time/week 332 240 (72.3) 92 (27.7)
     1-2 times/week 230 183 (79.6) 47 (20.4)
     3-5 times/week 155 118 (76.1) 37 (23.9)
     Almost daily 775 548 (70.7) 227 (29.3)
    Smoking 20.107 <0.001
     No smoking 402 293 (72.9) 109 (27.1)
     Quit smoking 174 97 (55.7) 77 (44.3)
     Smoking 3471 2471 (71.2) 1000 (28.8)
    Drinking 8.795 0.012
     No drinking 507 353 (69.6) 154 (30.4)
     Quit drinking 157 95 (60.5) 62 (39.5)
     Drinking 3383 2413 (71.3) 970 (28.7)
    SBP/mmHg 122.51±20.724 113.99±11.456 143.08±23.464 40.744 <0.001
    DBP/mmHg 80.53±13.417 74.76±8.459 94.45±12.942 48.171 <0.001
    TC/(mmol/L) 5.54±2.121 5.41±1.849 5.86±2.635 5.493 <0.001
    TG/(mmol/L) 1.08±0.770 1.01±0.715 1.25±0.864 8.601 <0.001
    HDL-C/(mmol/L) 1.65±0.560 1.66±0.600 1.63±0.590 1.178 0.239
    LDL-C/(mmol/L) 2.79±1.200 2.68±0.991 3.05±1.558 7.730 <0.001
    Hcy/(μmol/L) 21.40±10.490 20.69±10.170 23.10±11.04 6.460 <0.001
    Overweight/obesity 106.773 <0.001
     No 2179 1748 (80.2) 431 (19.8)
     Yes 1868 1113 (59.6) 755 (40.4)
    HHcy 41.465 <0.001
     No 946 744 (79.1) 197 (20.9)
     Yes 3101 2117 (68.2) 989 (31.8)
    Hyperglycemia 16.906 <0.001
     No 3891 2773 (71.3) 1117 (28.7)
     Yes 156 88 (56.1) 69 (43.9)
    Dyslipidemia 44.243 <0.001
     No 2391 1785 (74.7) 606 (25.3)
     Yes 1656 1076 (65) 580 (35)
     SBP: systolic blood pressure; DBP: diastolic blood pressure; TC: total cholesterol; TG: triglyceride; HDL-C: high-density lipoproteincholesterol; LDL-C: low-density lipoproteincholesterol; HHcy: hyperhomocysteinemia. 1 mmHg=0.133 kPa.
    下载: 导出CSV

    表  2  超重/肥胖、血脂异常与高血压的关联分析

    Table  2.   Relationship between overweight/obesity and dyslipidemia and hypertension

    VariableModel 1Model 2Model 3
    OR (95% CI)POR (95% CI)POR (95% CI)P
    Overweight/obesity
     No Ref Ref
     Yes 2.751 (2.391, 3.165) <0.001 2.514 (2.165, 2.918) <0.001 2.151 (1.846, 2.506) <0.001
    Dyslipidemia
     No Ref Ref
     Yes 1.588 (1.385, 1.820) <0.001 1.330 (1.145, 1.544) <0.001 1.240 (1.063, 1.447) <0.001
     Model 1 was not adjusted; Model 2 was adjusted for traditional risk factors such as age, gender, smoking, alcohol consumption, HHcy, dyslipidemia and hyperglycemia; Model was 3 fully adjusted for confounding factors such as age, gender, educational level, employment, marital status, altitude, smoking and drinking.
    下载: 导出CSV

    表  3  超重/肥胖、血脂异常对高血压的相加交互作用

    Table  3.   Interaction effect of overweight/obesity and dyslipidemia on hypertension

    Variable 1Variable 2Model 1 Model 2
    OR (95% CI)POR (95% CI)P
    Dyslipidemia Overweight/obesity
    No No Ref Ref
    Yes 1.8 (1.5, 2.3) <0.001 1.6 (1.3, 2.0) <0.001
    Yes No 3.2 (2.6, 3.9) <0.001 2.6 (2.1, 3.2) <0.001
    Yes 3.9 (3.3, 4.7) <0.001 3.9 (2.3, 3.6) <0.001
    P 0.004 0.028
    RERI 0.7 (0.140, 1.240)b
    API 0.179 (0.036, 0.318)b
    SI 1.318 (1.438, 2.571)b
     Model 1 was not adjusted; Model 2 was fully adjusted for confounding factors, including age, sex, education, employment, marital status, altitude, smoking, and drinking; b all came from additive interaction.
    下载: 导出CSV
  • [1] 王晨霞, 何博, 马玉霞, 等. 中国藏族人群高血压患病率的系统回顾和荟萃分析. 中华高血压杂志,2020,28(9): 847–855. doi: 10.16439/j.cnki.1673-7245.2020.09.014
    [2] 张寒, 马利锋, 张致英, 等. 成年藏族居民高血压、脂肪肝和高尿酸血症分布特征: 基于拉萨某社区的调查. 环境与职业医学,2020,37(12): 1182–1187. doi: 10.13213/j.cnki.jeom.2020.20308
    [3] KOENEN M, HILL M A, COHEN P, et al. Obesity, adipose tissue and vascular dysfunction. Circ Res,2021,128(7): 951–968. doi: 10.1161/CIRCRESAHA.121.318093.Epub2021Apr1
    [4] KUWABARA M, KUWABARA R, NIWA K, et al. Different risk for hypertension, diabetes, dyslipidemia, and hyperuricemia according to level of body mass index in Japanese and American subjects. Nutrients,2018,10(8): 1011. doi: 10.3390/nu10081011
    [5] 中国高血压防治指南修订委员会, 高血压联盟, 中华医学会心血管病学分会中国医师协会高血压专业委员, 等. 中国高血压防治指南(2018年修订版). 中国心血管杂志,2019,24(1): 24–56. doi: 10.3969/j.issn.1007-5410.2019.01.002
    [6] 王友发, 孙明晓, 薛宏, 等. 《中国肥胖预防和控制蓝皮书》解读及中国肥胖预防控制措施建议. 中华预防医学杂志,2019(9): 875–884. doi: 10.3760/cma.j.issn.0253-9624.2019.09.003
    [7] 诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版). 中国循环杂志,2016,31(10): 937–953. doi: 10.3969/j.issn.1000-3614.2016.10.001
    [8] 王富军, 王文琦. 《中国2型糖尿病防治指南(2020年版)》解读. 河北医科大学学报,2021,42(12): 1365–1371. doi: 10.3969/j.issn.1007-3205.2021.12.001
    [9] WEN P, KE L, YAN F A, et al. Prevalence, management, and associated factors of obesity, hypertension, and diabetes in Tibetan population compared with China overall. Int J Environ Res Public Health,2022,19(14): 8787. doi: 10.3390/ijerph19148787
    [10] WARD Z J, BLEICH S N, CRADOCK A L, et al. Projected U. S. state-level prevalence of adult obesity and severe obesity. N Engl J Med,2019,381(25): 2440–2450. doi: 10.1056/NEJMsa1909301
    [11] 德吉, 白玛, 扎西顿珠. 西藏昂仁县高血压患病率、知晓率、治疗率和控制率的调查. 中国心血管杂志,2020,25(1): 62–66. doi: 10.3969/j.issn.1007-5410.2020.01.014
    [12] 汪金龙, 蔚宏, 陈泽涛, 等. 西藏林芝市常住居民高血压病流行病学调查分析. 暨南大学学报(自然科学与医学版),2020,41(3): 241–245. doi: 10.11778/j.jdxb.2020.03.007
    [13] 张琦, 李潇, 孙威风, 等. 甘肃省成人血脂异常患病率及其危险因素调查. 解放军医学杂志,2018,43(10): 882–889. doi: 10.11855/j.issn.0577-7402.2018.10.13
    [14] 李志栋,侯海生,王硕,等. 脂质蓄积指数与吸烟、失眠对高血压患病风险的影响. 遵义医科大学学报,2021,44(5): 641–647. doi: 10.14169/j.cnki.zunyixuebao.2021.0101
    [15] 伏小红, 冯宦翔, 苟伟, 等. 白玉县藏族成年人血糖血脂情况分析. 热带医学杂志,2020,20(8): 1040–1043. doi: 10.3969/j.issn.1672-3619.2020.08.012
    [16] 李星辉, 李丽, 乔燕, 等. 高海拔区藏族成年人群血脂异常流行特点分析. 中国循环杂志,2009,24(6): 458–460. doi: 10.3969/j.issn.1000-3614.2009.06.016
    [17] HALL J E, Do CARMO J M, Da SILVA A A, et al. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res,2015,116(6): 991–1006. doi: 10.1161/CIRCRESAHA.116.305697
    [18] GARRISON R J, KANNEL W B, STOKES J, 3rd, et al. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med,1987,16(2): 235–251. doi: 10.1016/0091-7435(87)90087-9
    [19] GOU J, WU H. Secular trends of population attributable risk of overweight and obesity for hypertension among Chinese adults from 1991 to 2011. Sci Rep,2021,11(1): 6371. doi: 10.1038/s41598-021-85794-2
    [20] 许巍, 张行易, 路甲鹏, 等. 我国西北地区36万成人心血管病高危风险的特征. 西安交通大学学报(医学版),2021,42(5): 784–790. doi: 10.7652/jdyxb202105024
    [21] PAN X F, WANG L M, PAN A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol,2021,9(6): 373–392. doi: 10.1016/S2213-8587(21)00045-0
    [22] MASILELA C, PEARCE B, ONGOLE J J, et al. Cross-sectional study of prevalence and determinants of uncontrolled hypertension among South African adult residents of Mkhondo municipality. BMC Public Health,2020,20(1): 1069. doi: 10.1186/s12889-020-09174-7
    [23] 李建彬, 刘建勋, 武恩平, 等. 郑州市成年居民高血压流行现状及危险因素分析. 现代预防医学,2020,47(12): 2263–2266.
    [24] 朱惠娟, 张文, 杜明, 等. 超重/肥胖及血脂异常与高血压患病的关联分析. 江苏预防医学,2021,32(2): 200–202. doi: 10.13668/j.issn.1006-9070.2021.02.025
    [25] 袁悦, 李楠, 任爱国, 等. 流行病学研究中相加和相乘尺度交互作用的分析. 现代预防医学,2015,42(6): 961–965.
    [26] HU L, HUANG X, YOU C, et al. Prevalence and risk factors of prehypertension and hypertension in Southern China. PLoS One,2017,12(1): e0170238. doi: 10.1371/journal.pone.0170238
    [27] 周雨芳. 肥胖、血脂异常及其交互作用对单纯舒张期高血压的影响. 沈阳: 中国医科大学, 2022. doi: 10.27652/d.cnki.gzyku.2022.001323.
    [28] TANG N, MA J, TAO R, et al. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci Rep,2022,12(1): 927. doi: 10.1038/s41598-022-04968-8
    [29] SONG J, NIE S M, CHEN X, et al. Association and interaction between triglyceride-glucose index and obesity on risk of hypertension in middle-aged and elderly adults. Clin Exp Hypertens,2017,39(8): 732–739. doi: 10.1080/10641963.2017.1324477
    [30] ZHANG T, CHEN J, TANG X, et al. Interaction between adipocytes and high-density lipoprotein: new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis,2019,18(1): 223. doi: 10.1186/s12944-019-1170-9
  • 加载中
表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  5
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2023-04-21
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回