[1] |
ANDERSON N M, SIMON M C. The tumor microenvironment. Curr Biol,2020,30(16): R921–R925. doi: 10.1016/j.cub.2020.06.081
|
[2] |
陈洁,陈众博,张筠,等. 细胞外基质在肿瘤发展及治疗中的作用. 生命的化学,2022,42(3): 385–393. doi: 10.13488/j.smhx.20210827
|
[3] |
NEJMAN D, LIVYATAN I, FUKS G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science,2020,368(6494): 973–980. doi: 10.1126/science.aay9189
|
[4] |
GENG X, CHEN H, ZHAO L, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol,2021,9: 655152. doi: 10.3389/fcell.2021.655152
|
[5] |
BARTOSCHEK M, OSKOLKOV N, BOCCI M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun,2018,9(1): 5150. doi: 10.1038/s41467-018-07582-3
|
[6] |
SUN H, ZHANG D, HUANG C, et al. Hypoxic microenvironment induced spatial transcriptome changes in pancreatic cancer. Cancer Biol Med,2021,18(2): 616–630. doi: 10.20892/j.issn.2095-3941.2021.0158
|
[7] |
QUAIL D F, JOYCE J A. Microenvironmental regulation of tumor progression and metastasis. Nat Med,2013,19(11): 1423–1437. doi: 10.1038/nm.3394
|
[8] |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation. Cell,2011,144(5): 646–674. doi: 10.1016/j.cell.2011.02.013
|
[9] |
HÖCKEL M, VAUPEL P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst,2001,93(4): 266–276. doi: 10.1093/jnci/93.4.266
|
[10] |
IVEY J W, BONAKDAR M, KANITKAR A, et al. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor microenvironment. Cancer Lett,2016,380(1): 330–339. doi: 10.1016/j.canlet.2015.12.019
|
[11] |
FISCHER K, HOFFMANN P, VOELKL S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood,2007,109(9): 3812–3819. doi: 10.1182/blood-2006-07-035972
|
[12] |
DODARD G, TATA A, ERICK T K, et al. Inflammation-induced lactate leads to rapid loss of hepatic tissue-resident NK cells. Cell Rep,2020,32(1): 107855. doi: 10.1016/j.celrep.2020.107855
|
[13] |
KOUIDHI S, BEN AYED F, BENAMMAR ELGAAIED A. Targeting tumor metabolism: a new challenge to improve immunotherapy. Front Immunol,2018,9: 353. doi: 10.3389/fimmu.2018.00353
|
[14] |
CHEN Y, SONG Y, DU W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci,2019,26(1): 78. doi: 10.1186/s12929-019-0568-z
|
[15] |
O'NEILL L A, KISHTON R J, RATHMELL J. A guide to immunometabolism for immunologists. Nat Rev Immunol,2016,16(9): 553–565. doi: 10.1038/nri.2016.70
|
[16] |
GEIGER R, RIECKMANN J C, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell,2016,167(3): 829–842.e13. doi: 10.1016/j.cell.2016.09.031
|
[17] |
MARIGO I, ZILIO S, DESANTIS G, et al. T cell cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell,2016,30(3): 377–390. doi: 10.1016/j.ccell.2016.08.004
|
[18] |
CRONIN S J F, SEEHUS C, WEIDINGER A, et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature,2018,563(7732): 564–568. doi: 10.1038/s41586-018-0701-2
|
[19] |
PERRONE F, MINARI R, BERSANELLI M, et al. The prognostic role of high blood cholesterol in advanced cancer patients treated with immune checkpoint inhibitors. J Immunother,2020,43(6): 196–203. doi: 10.1097/CJI.0000000000000321
|
[20] |
BLEVE A, DURANTE B, SICA A, et al. Lipid metabolism and cancer immunotherapy: immunosuppressive myeloid cells at the crossroad. Int J Mol Sci,2020,21(16): 5845. doi: 10.3390/ijms21165845
|
[21] |
XUE Q, ROH-JOHNSON M. Sharing is caring. Dev Cell,2019,49(3): 306–307. doi: 10.1016/j.devcel.2019.04.023
|
[22] |
POORE G D, KOPYLOVA E, ZHU Q, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature,2020,579(7800): 567–574. doi: 10.1038/s41586-020-2095-1
|
[23] |
JAIN T, SHARMA P, ARE A C, et al. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front Immunol,2021,12: 622064. doi: 10.3389/fimmu.2021.622064
|
[24] |
WONG-ROLLE A, WEI H K, ZHAO C, et al. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell,2021,12(5): 426–435. doi: 10.1007/s13238-020-00813-8
|
[25] |
GREATHOUSE K L, WHITE J R, VARGAS A J, et al. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol,2018,19(1): 123. doi: 10.1186/s13059-018-1501-6
|
[26] |
MA J, HUANG L, HU D, et al. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? J Exp Clin Cancer Res,2021,40(1): 327. doi: 10.1186/s13046-021-02128-w
|
[27] |
TSAY J J, WU B G, BADRI M H, et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am J Respir Crit Care Med,2018,198(9): 1188–1198. doi: 10.1164/rccm.201710-2118OC
|
[28] |
GUO W, ZHANG Y, GUO S, et al. Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol,2021,4(1): 1019. doi: 10.1038/s42003-021-02557-5
|
[29] |
FU A, YAO B, DONG T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell,2022,185(8): 1356–1372.e26. doi: 10.1016/j.cell.2022.02.027
|
[30] |
GELLER L T, BARZILY-ROKNI M, DANINO T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science,2017,357(6356): 1156–1160. doi: 10.1126/science.aah5043
|
[31] |
HELMINK B A, KHAN M A W, HERMANN A, et al. The microbiome, cancer, and cancer therapy. Nat Med,2019,25(3): 377–388. doi: 10.1038/s41591-019-0377-7
|
[32] |
MIMA K, SUKAWA Y, NISHIHARA R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol,2015,1(5): 653–661. doi: 10.1001/jamaoncol.2015.1377
|
[33] |
GUR C, MAALOUF N, SHHADEH A, et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology,2019,8(6): e1581531. doi: 10.1080/2162402X.2019.1581531
|
[34] |
FONG W, LI Q, YU J. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene,2020,39(26): 4925–4943. doi: 10.1038/s41388-020-1341-1
|
[35] |
ROUTY B, Le CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science,2018,359(6371): 91–97. doi: 10.1126/science.aan3706
|
[36] |
MATSON V, FESSLER J, BAO R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science,2018,359(6371): 104–108. doi: 10.1126/science.aao3290
|
[37] |
ZHENG J H, NGUYEN V H, JIANG S N, et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med,2017,9(376): eaak9537. doi: 10.1126/scitranslmed.aak9537
|
[38] |
PUSHALKAR S, HUNDEYIN M, DALEY D, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov,2018,8(4): 403–416. doi: 10.1158/2159-8290.CD-17-1134
|
[39] |
CORN K C, WINDHAM M A, RAFAT M. Lipids in the tumor microenvironment: from cancer progression to treatment. Prog Lipid Res,2020,80: 101055. doi: 10.1016/j.plipres.2020.101055
|
[40] |
BIAN X, LIU R, MENG Y, et al. Lipid metabolism and cancer. J Exp Med,2021,218(1): e20201606. doi: 10.1084/jem.20201606
|
[41] |
WU L, ZHANG X, ZHENG L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res,2020,8(5): 710–721. doi: 10.1158/2326-6066.CIR-19-0261
|
[42] |
Di CONZA G, TSAI C H, GALLART-AYALA H, et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat Immunol,2021,22(11): 1403–1415. doi: 10.1038/s41590-021-01047-4
|
[43] |
O'NEILL L A, PEARCE E J. Immunometabolism governs dendritic cell and macrophage function. J Exp Med,2016,213(1): 15–23. doi: 10.1084/jem.20151570
|
[44] |
YIN X, ZENG W, WU B, et al. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep,2020,33(3): 108278. doi: 10.1016/j.celrep.2020.108278
|
[45] |
LIU X, HARTMAN C L, LI L, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med,2021,13(587): eaaz6314. doi: 10.1126/scitranslmed.aaz6314
|
[46] |
LI X, WENES M, ROMERO P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol,2019,16(7): 425–441. doi: 10.1038/s41571-019-0203-7
|
[47] |
FIELD C S, BAIXAULI F, KYLE R L, et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function. Cell Metab,2020,31(2): 422–437.e5. doi: 10.1016/j.cmet.2019.11.021
|
[48] |
WANG J, LI Y. CD36 tango in cancer: signaling pathways and functions. Theranostics,2019,9(17): 4893–4908. doi: 10.7150/thno.36037
|