[1] |
LI X, WENES M, ROMERO P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol,2019,16(7): 425–441. doi: 10.1038/s41571-019-0203-7
|
[2] |
CASCONE T, MCKENZIE J A, MBOFUNG R M, et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab,2018,27(5): 977–987. doi: 10.1016/j.cmet.2018.02.024
|
[3] |
ANCEY P B, CONTAT C, MEYLAN E. Glucose transporters in cancer--from tumor cells to the tumor microenvironment. FEBS J,2018,285(16): 2926–2943. doi: 10.1111/febs.14577
|
[4] |
CORBET C, FERON O. Tumour acidosis: from the passenger to the driver's seat. Nat Rev Cancer,2017,17(10): 577–593. doi: 10.1038/nrc.2017.77
|
[5] |
LIU X, HOFT D F, PENG G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest,2020,130(3): 1073–1083. doi: 10.1172/jci133679
|
[6] |
ANGELIN A, GIL-De-GÓMEZ L, DAHIYA S, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab,2017,25(6): 1282–1293.e7. doi: 10.1016/j.cmet.2016.12.018
|
[7] |
LIU X, MO W, YE J, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun,2018,9(1): 249. doi: 10.1038/s41467-017-02689-5
|
[8] |
CHANG C H, QIU J, O'SULLIVAN D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell,2015,162(6): 1229–1241. doi: 10.1016/j.cell.2015.08.016
|
[9] |
LI W, TANIKAWA T, KRYCZEK I, et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab,2018,28(1): 87–103.e6. doi: 10.1016/j.cmet.2018.04.022
|
[10] |
HUSAIN Z, HUANG Y, SETH P, et al. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol,2013,191(3): 1486–1495. doi: 10.4049/jimmunol.1202702
|
[11] |
BOHN T, RAPP S, LUTHER N, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol,2018,19(12): 1319–1329. doi: 10.1038/s41590-018-0226-8
|
[12] |
ZHANG W, WANG G, XU Z G, et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell,2019,178(1): 176–189.e15. doi: 10.1016/j.cell.2019.05.003
|
[13] |
SUN S, LI H, CHEN J, et al. Lactic acid: no longer an inert and end-product of glycolysis. Physiology (Bethesda),2017,32(6): 453–463. doi: 10.1152/physiol.00016.2017
|
[14] |
PAJAK B, SIWIAK E, SOŁTYKA M, et al. 2-deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci,2019,21(1): 234. doi: 10.3390/ijms21010234
|
[15] |
CHRISTOFK H R, VANDER HEIDEN M G, HARRIS M H, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature,2008,452(7184): 230–233. doi: 10.1038/nature06734
|
[16] |
HOU P P, LUO L J, CHEN H Z, et al. Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell,2020,78(6): 1192–1206.e10. doi: 10.1016/j.molcel.2020.05.004
|
[17] |
ZHOU Y, HUANG Z, SU J, et al. Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment. Int J Cancer,2020,147(1): 139–151. doi: 10.1002/ijc.32756
|
[18] |
HUANG R, JING X, HUANG X, et al. Bifunctional naphthoquinone aromatic amide-oxime derivatives exert combined immunotherapeutic and antitumor effects through simultaneous targeting of indoleamine-2, 3-dioxygenase and signal transducer and activator of transcription 3. J Med Chem,2020,63(4): 1544–1563. doi: 10.1021/acs.jmedchem.9b01386
|
[19] |
RIVERA-ÁVALOS E, De LOERA D, ARAUJO-HUITRADO J G, et al. Synthesis of amino acid-naphthoquinones and in vitro studies on cervical and breast cell lines. Molecules,2019,24(23): 4285. doi: 10.3390/molecules24234285
|
[20] |
HSU M C, HUNG W C. Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer,2018,17(1): 35. doi: 10.1186/s12943-018-0791-3
|
[21] |
CURTIS N J, MOONEY L, HOPCROFT L, et al. Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt's lymphoma anti-tumor activity. Oncotarget,2017,8(41): 69219–69236. doi: 10.18632/oncotarget.18215
|
[22] |
NABE S, YAMADA T, SUZUKI J, et al. Reinforce the antitumor activity of CD8(+) T cells via glutamine restriction. Cancer Sci,2018,109(12): 3737–3750. doi: 10.1111/cas.13827
|
[23] |
JOHNSON M O, WOLF M M, MADDEN M Z, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell,2018,175(7): 1780–1795.e19. doi: 10.1016/j.cell.2018.10.001
|
[24] |
LIU P S, WANG H, LI X, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol,2017,18(9): 985–994. doi: 10.1038/ni.3796
|
[25] |
ALTMAN B J, STINE Z E, DANG C V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer,2016,16(10): 619–634. doi: 10.1038/nrc.2016.71
|
[26] |
GREGORY M A, NEMKOV T, PARK H J, et al. Targeting glutamine metabolism and redox state for leukemia therapy. Clin Cancer Res,2019,25(13): 4079–4090. doi: 10.1158/1078-0432.Ccr-18-3223
|
[27] |
JACQUE N, RONCHETTI A M, LARRUE C, et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood,2015,126(11): 1346–1356. doi: 10.1182/blood-2015-01-621870
|
[28] |
LUENGO A, GUI D Y, VANDER HEIDEN M G. Targeting metabolism for cancer therapy. Cell Chem Biol,2017,24(9): 1161–1180. doi: 10.1016/j.chembiol.2017.08.028
|
[29] |
PAVLOVA N N, HUI S, GHERGUROVICH J M, et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab,2018,27(2): 428–438.e5. doi: 10.1016/j.cmet.2017.12.006
|
[30] |
COOLS J. Improvements in the survival of children and adolescents with acute lymphoblastic leukemia. Haematologica,2012,97(5): 635. doi: 10.3324/haematol.2012.068361
|
[31] |
Van TRIMPONT M, SCHALK A M, De VISSER Y, et al. In vivo stabilization of a less toxic asparaginase variant leads to a durable antitumor response in acute leukemia. Haematologica,2023,108(2): 409–419. doi: 10.3324/haematol.2022.281390
|
[32] |
GROHMANN U, MONDANELLI G, BELLADONNA M L, et al. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev,2017,35: 37–45. doi: 10.1016/j.cytogfr.2017.05.004
|
[33] |
HE X, LIN H, YUAN L, et al. Combination therapy with l-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther,2017,18(2): 94–100. doi: 10.1080/15384047.2016.1276136
|
[34] |
GEIGER R, RIECKMANN J C, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell,2016,167(3): 829–842.e13. doi: 10.1016/j.cell.2016.09.031
|
[35] |
AABOE JØRGENSEN M, UGEL S, LINDER HÜBBE M, et al. Arginase 1-based immune modulatory vaccines induce anticancer immunity and synergize with anti-PD-1 checkpoint blockade. Cancer Immunol Res,2021,9(11): 1316–1326. doi: 10.1158/2326-6066.Cir-21-0280
|
[36] |
WERNER A, KOSCHKE M, LEUCHTNER N, et al. Reconstitution of T cell proliferation under arginine limitation: activated human T cells take up citrulline via l-type amino acid transporter 1 and use it to regenerate arginine after induction of argininosuccinate synthase expression. Front Immunol,2017,8: 864. doi: 10.3389/fimmu.2017.00864
|
[37] |
MUSSAI F, WHEAT R, SARROU E, et al. Targeting the arginine metabolic brake enhances immunotherapy for leukaemia. Int J Cancer,2019,145(8): 2201–2208. doi: 10.1002/ijc.32028
|
[38] |
TARASENKO T N, GOMEZ-RODRIGUEZ J, MCGUIRE P J. Impaired T cell function in argininosuccinate synthetase deficiency. J Leukoc Biol,2015,97(2): 273–278. doi: 10.1189/jlb.1AB0714-365R
|
[39] |
FULTANG L, BOOTH S, YOGEV O, et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood,2020,136(10): 1155–1160. doi: 10.1182/blood.2019004500
|
[40] |
PLATTEN M, NOLLEN E A A, RÖHRIG U F, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov,2019,18(5): 379–401. doi: 10.1038/s41573-019-0016-5
|
[41] |
MUNN D H, MELLOR A L. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol,2016,37(3): 193–207. doi: 10.1016/j.it.2016.01.002
|
[42] |
MINHAS P S, LIU L, MOON P K, et al. Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation. Nat Immunol,2019,20(1): 50–63. doi: 10.1038/s41590-018-0255-3
|
[43] |
MULLARD A. IDO takes a blow. Nat Rev Drug Discov,2018,17(5): 307. doi: 10.1038/nrd.2018.67
|
[44] |
BOCHET L, LEHUÉDÉ C, DAUVILLIER S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res,2013,73(18): 5657–5668. doi: 10.1158/0008-5472.Can-13-0530
|
[45] |
GEERAERTS X, BOLLI E, FENDT S M, et al. Macrophage metabolism as therapeutic rarget for cancer, atherosclerosis, and obesity. Front Immunol,2017,8: 289. doi: 10.3389/fimmu.2017.00289
|
[46] |
CHOWDHURY P S, CHAMOTO K, KUMAR A, et al. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8(+) T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res,2018,6(11): 1375–1387. doi: 10.1158/2326-6066.Cir-18-0095
|
[47] |
LIN R, ZHANG H, YUAN Y, et al. Fatty acid oxidation controls CD8(+) tissue-resident memory T-cell survival in gastric adenocarcinoma. Cancer Immunol Res,2020,8(4): 479–492. doi: 10.1158/2326-6066.Cir-19-0702
|
[48] |
YANG W, BAI Y, XIONG Y, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature,2016,531(7596): 651–655. doi: 10.1038/nature17412
|
[49] |
QIN W H, YANG Z S, LI M, et al. High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice. Gastroenterology,2020,158(6): 1713–1727. doi: 10.1053/j.gastro.2020.01.028
|
[50] |
SAG D, CEKIC C, WU R, et al. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun,2015,6: 6354. doi: 10.1038/ncomms7354
|
[51] |
MA X, BI E, LU Y, et al. Cholesterol Induces CD8. Cell Metab,2019,30(1): 143–156.e5. doi: 10.1016/j.cmet.2019.04.002
|
[52] |
KANEDA M M, CAPPELLO P, NGUYEN A V, et al. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov,2016,6(8): 870–885. doi: 10.1158/2159-8290.Cd-15-1346
|
[53] |
PILON-THOMAS S, KODUMUDI K N, El-KENAWI A E, et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res,2016,76(6): 1381–1390. doi: 10.1158/0008-5472.Can-15-1743
|
[54] |
KUCHUK O, TUCCITTO A, CITTERIO D, et al. PH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncoimmunology,2018,7(7): e1445452. doi: 10.1080/2162402x.2018.1445452
|
[55] |
PALMIERI E M, MENGA A, MARTÍN-PÉREZ R, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep,2017,20(7): 1654–1666. doi: 10.1016/j.celrep.2017.07.054
|
[56] |
WU L, ZHANG X, ZHENG L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res,2020,8(5): 710–721. doi: 10.1158/2326-6066.Cir-19-0261
|
[57] |
NETEA M G, DOMÍNGUEZ-ANDRÉS J, BARREIRO L B, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol,2020,20(6): 375–388. doi: 10.1038/s41577-020-0285-6
|
[58] |
ARTS R J, NOVAKOVIC B, TER HORST R, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab,2016,24(6): 807–819. doi: 10.1016/j.cmet.2016.10.008
|
[59] |
CHENG S C, QUINTIN J, CRAMER R A, et al. MTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science,2014,345(6204): 1250684. doi: 10.1126/science.1250684
|
[60] |
ARTS R J W, CARVALHO A, La ROCCA C, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep,2016,17(10): 2562–2571. doi: 10.1016/j.celrep.2016.11.011
|
[61] |
KEATING S T, GROH L, THIEM K, et al. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J Mol Med (Berl),2020,98(6): 819–831. doi: 10.1007/s00109-020-01915-w
|
[62] |
Van Der HEIJDEN C, GROH L, KEATING S T, et al. Catecholamines induce trained immunity in monocytes in vitro and In vivo. Circ Res,2020,127(2): 269–283. doi: 10.1161/circresaha.119.315800
|
[63] |
KEATING S T, GROH L, Van Der HEIJDEN C, et al. The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. Cell Rep,2020,31(3): 107548. doi: 10.1016/j.celrep.2020.107548
|
[64] |
BEKKERING S, ARTS R J W, NOVAKOVIC B, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell,2018,172(1/2): 135–146.e9. doi: 10.1016/j.cell.2017.11.025
|
[65] |
DOMÍNGUEZ-ANDRÉS J, NOVAKOVIC B, LI Y, et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab,2019,29(1): 211–220.e5. doi: 10.1016/j.cmet.2018.09.003
|
[66] |
SOULARUE E, LEPAGE P, COLOMBEL J F, et al. Enterocolitis due to immune checkpoint inhibitors: a systematic review. Gut,2018,67(11): 2056–2067. doi: 10.1136/gutjnl-2018-316948
|
[67] |
LAG3-PD-1 combo impresses in melanoma. Cancer Discov,2021,11(7): 1605–1606. doi: 10.1158/2159-8290.Cd-nb2021-0347
|
[68] |
DIXON K O, TABAKA M, SCHRAMM M A, et al. TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature,2021,595(7865): 101–106. doi: 10.1038/s41586-021-03626-9
|
[69] |
La-BECK N M, JEAN G W, HUYNH C, et al. Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy,2015,35(10): 963–976. doi: 10.1002/phar.1643
|
[70] |
LIZÉE G, OVERWIJK W W, RADVANYI L, et al. Harnessing the power of the immune system to target cancer. Annu Rev Med,2013,64: 71–90. doi: 10.1146/annurev-med-112311-083918
|
[71] |
LIM S, LIU H, Da SILVA L M, et al. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res,2016,76(8): 2231–2242. doi: 10.1158/0008-5472.Can-15-1538
|
[72] |
PATSOUKIS N, BARDHAN K, CHATTERJEE P, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun,2015,6: 6692. doi: 10.1038/ncomms7692
|
[73] |
SHARMA P, WAGNER K, WOLCHOK J D, et al. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer,2011,11(11): 805–812. doi: 10.1038/nrc3153
|
[74] |
ZHENG W, O'HEAR C E, ALLI R, et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia,2018,32(5): 1157–1167. doi: 10.1038/s41375-017-0008-6
|
[75] |
KAWALEKAR O U, O'CONNOR R S, FRAIETTA J A, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity,2016,44(2): 380–390. doi: 10.1016/j.immuni.2016.01.021
|
[76] |
KLICHINSKY M, RUELLA M, SHESTOVA O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol,2020,38(8): 947–953. doi: 10.1038/s41587-020-0462-y
|