[1] |
LOK C. Mining the microbial dark matter. Nature,2015,522(7556): 270–273. doi: 10.1038/522270a
|
[2] |
WHITESIDES G M. The origins and the future of microfluidics. Nature,2006,442(7101): 368–373. doi: 10.1038/nature05058
|
[3] |
HUYS G R B, RAES J. Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes. Curr Opin Microbiol,2018,44: 1–8. doi: 10.1016/j.mib.2018.05.002
|
[4] |
CARNES E C, LOPEZ D M, DONEGAN N P, et al. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol,2010,6(1): 41–45. doi: 10.1038/nchembio.264
|
[5] |
HENGOJU S, TOVAR M, MAN D K W, et al. Droplet microfluidics for microbial biotechnology. Adv Biochem Eng Biotechnol,2020,179: 129–157. doi: 10.1007/10_2020_140
|
[6] |
BOWMAN E K, ALPER H S. Microdroplet-assisted screening of biomolecule production for metabolic engineering applications. Trends Biotechnol,2020,38(7): 701–714. doi: 10.1016/j.tibtech.2019.11.002
|
[7] |
SOHRABI S, MORAVEJI M K. Droplet microfluidics: fundamentals and its advanced applications. RSC Adv,2020,10(46): 27560–27574. doi: 10.1039/d0ra04566g
|
[8] |
JIAN X, GUO X, WANG J, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol Bioeng,2020,117(6): 1724–1737. doi: 10.1002/bit.27327
|
[9] |
LAN F, DEMAREE B, AHMED N, et al. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol,2017,35(7): 640–646. doi: 10.1038/nbt.3880
|
[10] |
CHURSKI K, KAMINSKI T S, JAKIELA S, et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip,2012,12(9): 1629–1637. doi: 10.1039/c2lc21284f
|
[11] |
SHANG L, CHENG Y, ZHAO Y. Emerging droplet microfluidics. Chem Rev,2017,117(12): 7964–8040. doi: 10.1021/acs.chemrev.6b00848
|
[12] |
XI H D, ZHENG H, GUO W, et al. Active droplet sorting in microfluidics: a review. Lab Chip,2017,17(5): 751–771. doi: 10.1039/c6lc01435f
|
[13] |
KAMINSKI T S, SCHELER O, GARSTECKI P. Droplet microfluidics for microbiology: techniques, applications and challenges. Lab Chip,2016,16(12): 2168–2187. doi: 10.1039/c6lc00367b
|
[14] |
ZHENG W, ZHAO S, YIN Y, et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science,2022,376(6597): eabm1483. doi: 10.1126/science.abm1483
|
[15] |
MARTIN K, HENKEL T, BAIER V, et al. Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. Lab Chip,2003,3(3): 202–207. doi: 10.1039/b301258c
|
[16] |
BOEDICKER J, VINCENT M, ISMAGILOV R. Supporting information for mMicrofluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl,2009,48(32): 5908–5911. doi: 10.1002/anie.200901550
|
[17] |
LIU H, XU X, PENG K, et al. Microdroplet enabled cultivation of single yeast cells correlates with bulk growth and reveals subpopulation phenomena. Biotechnol Bioeng,2021,118(2): 647–658. doi: 10.1002/bit.27591
|
[18] |
WU H, CHEN X, GAO X, et al. High-throughput generation of durable droplet arrays for single-cell encapsulation, culture, and monitoring. Anal Chem,2018,90(7): 4303–4309. doi: 10.1021/acs.analchem.8b00048
|
[19] |
VILLA M M, BLOOM R J, SILVERMAN J D, et al. Interindividual variation in dietary carbohydrate metabolism by gut bacteria revealed with droplet microfluidic culture. mSystems,2020,5(3): e00864–19. doi: 10.1128/mSystems
|
[20] |
JIANG C Y, DONG L, ZHAO J K, et al. High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol,2016,82(7): 2210–2218. doi: 10.1128/AEM
|
[21] |
ZHOU N, SUN Y T, CHEN D W, et al. Harnessing microfluidic streak plate technique to investigate the gut microbiome of Reticulitermes chinensis. Microbiol Open,2019,8(3): e00654. doi: 10.1002/mbo3.654
|
[22] |
CHEN D, LIU S J, DU W. Chemotactic screening of imidazolinone-degrading bacteria by microfluidic SlipChip. J Hazard Mater,2019,366: 512–519. doi: 10.1016/j.jhazmat
|
[23] |
HU B, XU B, YUN J, et al. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge. Lab Chip,2020,20(2): 363–372. doi: 10.1039/c9lc00761j
|
[24] |
HE Z, WU H, YAN X, et al. Recent advances in droplet microfluidics for microbiology. Chinese Chem Lett,2022,33(4): 1729–1742. doi: 10.1016/j.cclet.2021.08.059
|
[25] |
LIU W, KIM H J, LUCCHETTA E M, et al. Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab Chip,2009,9(15): 2153–2162. doi: 10.1039/b904958d
|
[26] |
HSIEH K, ZEC H C, CHEN L, et al. Simple and precise counting of viable bacteria by resazurin-amplified picoarray detection. Anal Chem,2018,90(15): 9449–9456. doi: 10.1021/acs.analchem.8b02096
|
[27] |
HE Y, WANG X, MA B, et al. Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv,2019,37(6): 107388. doi: 10.1016/j.biotechadv.2019.04.010
|
[28] |
XU T, GONG Y, SU X, et al. Phenome–genome profiling of single bacterial cell by Raman-activated gravity-driven encapsulation and sequencing. Small,2020,16(30): 2001172. doi: 10.1002/smll.202001172
|
[29] |
WANG X, XIN Y, REN L, et al. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo. Sci Adv,2020,6(32): eabb3521. doi: 10.1126/sciadv.abb3521
|
[30] |
OU Y, CAO S, ZHANG J, et al. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. Trends Analyt Chem,2021,143: 116333. doi: 10.1016/j.trac.2021.116333
|
[31] |
BARLOW J T, BOGATYREV S R, ISMAGILOV R F. A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat Commun,2020,11(1): 1–13. doi: 10.1038/s41467-020-16224-6
|
[32] |
MANZARI C, ORANGER A, FOSSO B, et al. Accurate quantification of bacterial abundance in metagenomic DNAs accounting for variable DNA integrity levels. Microb Genom,2020,6(10): mgen000417. doi: 10.1099/mgen.0.000417
|
[33] |
DONG G, MENG F, ZHANG Y, et al. Development and evaluation of a droplet digital PCR assay for the detection of fowl adenovirus serotypes 4 and 10 in attenuated vaccines. J Virol Methods,2019,265: 59–65. doi: 10.1016/j.jviromet.2018.09.005
|
[34] |
XU L, QU H, ALONSO D G, et al. Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosens Bioelectron,2021,175: 112908. doi: 10.1016/j.bios.2020.112908
|
[35] |
JIANG Y, MANZ A, WU W. Fully automatic integrated continuous-flow digital PCR device for absolute DNA quantification. Anal Chim Acta,2020,1125: 50–56. doi: 10.1016/j.aca.2020.05.044
|
[36] |
YU Z, LYU W, YU M, et al. Self-partitioning SlipChip for slip-induced droplet formation and human papillomavirus viral load quantification with digital LAMP. Biosens Bioelectron,2020,155: 112107. doi: 10.1016/j.bios.2020.112107
|
[37] |
YU F, YAN L, WANG N, et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin Infect Dis,2020,71(15): 793–798. doi: 10.1093/cid/ciaa345
|
[38] |
CHEN L, YADAV V, ZHANG C, et al. Elliptical pipette generated large microdroplets for POC visual ddPCR quantification of low viral load. Anal Chem,2021,93(16): 6456–6462. doi: 10.1021/acs.analchem.1c00192
|
[39] |
SHETH R U, LI M, JIANG W, et al. Spatial metagenomic characterization of microbial biogeography in the gut. Nat Biotechnol,2019,37(8): 877–883. doi: 10.1038/s41587-019-0183-2
|
[40] |
SHI X, SHAO C, LUO C, et al. Microfluidics-based enrichment and whole-genome amplification enable strain-level resolution for airway metagenomics. mSystems,2019,4(4): e00198-19. doi: 10.1128/mSystems.00198-19
|
[41] |
PARK J, KERNER A, BURNS M A, et al. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One,2011,6(2): e17019. doi: 10.1371/journal.pone.0017019
|
[42] |
TAN J Y, WANG S, DICK G J, et al. Co-cultivation of microbial sub-communities in microfluidic droplets facilitates high-resolution genomic dissection of microbial ‘dark matter’. Integr Biol,2020,12(11): 263–274. doi: 10.1093/intbio/zyaa021
|
[43] |
JAROSZ D F, BROWN J C, WALKER G A, et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell,2014,158(5): 1083–1093. doi: 10.1016/j.cell.2014.07.025
|
[44] |
LAM T, MAIENSCHEIN-CLINE M, EDDINGTON D T, et al. Multiplex gene transfer by genetic transformation between isolated S. pneumoniae cells confined in microfluidic droplets. Integr Biol,2020,11(12): 415–424. doi: 10.1093/intbio/zyz036
|
[45] |
LAM T, BRENNAN M D, MORRISON D A, et al. Femtoliter droplet confinement of Streptococcus pneumoniae: bacterial genetic transformation by cell-cell interaction in droplets. Lab Chip,2019,19(4): 682–692. doi: 10.1039/c8lc01367e
|
[46] |
HSU R H, CLARK R L, TAN J W, et al. Microbial interaction network inference in microfluidic droplets. Cell Syst,2019,9(3): 229–42.e4. doi: 10.1016/j.cels.2019.06.008
|
[47] |
SALESKI T E, KERNER A R, CHUNG M T, et al. Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metab Eng,2019,54: 232–243. doi: 10.1016/j.ymben.2019.04.007
|
[48] |
TEREKHOV S S, SMIRNOV I V, MALAKHOVA M V, et al. Ultrahigh-throughput functional profiling of microbiota communities. Proc Natl Acad Sci U S A,2018,115(38): 9551–9556. doi: 10.1073/pnas.1811250115
|
[49] |
ZHANG K, QIN S, WU S, et al. Microfluidic systems for rapid antibiotic susceptibility tests (ASTs) at the single-cell level. Chem Sci,2020,11(25): 6352–6361. doi: 10.1039/d0sc01353f
|
[50] |
HASSAN S U, ZHANG X. Microfluidics as an emerging platform for tackling antimicrobial resistance (AMR): a review. Curr Anal Chem,2020,16(1): 41–51. doi: 10.2174/1573411015666181224145845
|
[51] |
BOEDICKER J Q, LI L, KLINE T R, et al. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip,2008,8(8): 1265–1272. doi: 10.1039/b804911d
|
[52] |
KAUSHIK A M, HSIEH K, CHEN L, et al. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens Bioelectron,2017,97: 260–266. doi: 10.1016/j.bios.2017.06.006
|
[53] |
POSTEK W, GARGULINSKI P, SCHELER O, et al. Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli. Lab Chip,2018,18(23): 3668–3677. doi: 10.1039/c8lc00916c
|
[54] |
KANG W, SARKAR S, LIN Z S, et al. Ultrafast parallelized microfluidic platform for antimicrobial susceptibility testing of Gram positive and negative bacteria. Anal Chem,2019,91(9): 6242–6249. doi: 10.1021/acs.analchem.9b00939
|
[55] |
MASHAGHI S, Van OIJEN A M. Droplet microfluidics for kinetic studies of viral fusion. Biomicrofluidics,2016,10(2): 024102. doi: 10.1063/1.4943126
|
[56] |
YUCHA R W, HOBBS K S, HANHAUSER E, et al. High-throughput characterization of HIV-1 reservoir reactivation using a single-cell-in-droplet PCR assay. eBioMedicine,2017,20: 217–229. doi: 10.1016/j.ebiom.2017.05.006
|
[57] |
HERNANDEZ-VALDES J A, AAN De STEGGE M, HERMANS J, et al. Enhancement of amino acid production and secretion by Lactococcus lactis using a droplet-based biosensing and selection system. Metab Eng Commun,2020,11: e00133. doi: 10.1016/j.mec.2020.e00133
|
[58] |
MAHLER L, NIEHS S P, MARTIN K, et al. Highly parallelized droplet cultivation and prioritization of antibiotic producers from natural microbial communities. eLife,2021,10: e64774. doi: 10.7554/eLife.64774
|
[59] |
GUO L, ZENG W, XU S, et al. Fluorescence-activated droplet sorting for enhanced pyruvic acid accumulation by Candida glabrata. Bioresour Technol,2020,318: 124258. doi: 10.1016/j.biortech.2020.124258
|
[60] |
SCHIRMER M, WINK K, OHLA S, et al. Conversion efficiencies of a few living microbial cells detected at a high throughput by droplet-based ESI-MS. Anal Chem,2020,92(15): 10700–10708. doi: 10.1021/acs.analchem.0c01839
|
[61] |
MA F, GUO T, ZHANG Y, et al. An ultrahigh-throughput screening platform based on flow cytometric droplet sorting for mining novel enzymes from metagenomic libraries. Environ Microbiol,2021,23(2): 996–1008. doi: 10.1111/1462-2920.15257
|
[62] |
TAUZIN A S, PEREIRA M R, Van VLIET L D, et al. Investigating host-microbiome interactions by droplet based microfluidics. Microbiome,2020,8(1): 1–20. doi: 10.1186/s40168-020-00911-z
|
[63] |
XU P, MODAVI C, DEMAREE B, et al. Microfluidic automated plasmid library enrichment for biosynthetic gene cluster discovery. Nucleic Acids Res,2020,48(8): e48. doi: 10.1093/nar/gkaa131
|
[64] |
NING R, FAN J, KONG L, et al. Recent developments of droplets-based microfluidics for bacterial analysis. Chinese Chem Lett,2022,33(5): 2243–2252. doi: 10.1016/j.cclet.2021.08.096
|
[65] |
VALLEJO D, NIKOOMANZAR A, PAEGEL B M, et al. Fluorescence-activated droplet sorting for single-cell directed evolution. ACS Synth Biol,2019,8(6): 1430–1440. doi: 10.1021/acssynbio.9b00103
|
[66] |
ZUREK P J, HOURS R, SCHELL U, et al. Growth amplification in ultrahigh-throughput microdroplet screening increases sensitivity of clonal enzyme assays and minimizes phenotypic variation. Lab Chip,2021,21(1): 163–173. doi: 10.1039/d0lc00830c
|