欢迎来到《四川大学学报(医学版)》

变异链球菌聚酮/非核糖体肽类次级代谢产物研究进展

张梦碟 程兴群 徐欣

张梦碟, 程兴群, 徐欣. 变异链球菌聚酮/非核糖体肽类次级代谢产物研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 685-691. doi: 10.12182/20230560302
引用本文: 张梦碟, 程兴群, 徐欣. 变异链球菌聚酮/非核糖体肽类次级代谢产物研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 685-691. doi: 10.12182/20230560302
ZHANG Meng-die, CHENG Xing-qun, XU Xin. Latest Findings on Polyketides/Non-ribosomal Peptides That Are Secondary Metabolites of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 685-691. doi: 10.12182/20230560302
Citation: ZHANG Meng-die, CHENG Xing-qun, XU Xin. Latest Findings on Polyketides/Non-ribosomal Peptides That Are Secondary Metabolites of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 685-691. doi: 10.12182/20230560302

变异链球菌聚酮/非核糖体肽类次级代谢产物研究进展

doi: 10.12182/20230560302
基金项目: 国家自然科学基金青年基金(No. 82101002)和四川大学专职博士后研发基金(No. 2021SCU12113)资助
详细信息
    通讯作者:

    E-mail:xin.xu@scu.edu.cn

Latest Findings on Polyketides/Non-ribosomal Peptides That Are Secondary Metabolites of Streptococcus mutans

Funds: This study was supported by the National Natural Science Foundation (82101002), and the Postdoctoral Fund of Sichuan University (2021SCU12113)
More Information
  • 摘要: 龋病是在以细菌为主的多因素影响下,牙体硬组织发生的慢性感染性疾病。变异链球菌被认为是引起龋病的主要病原体。次级代谢产物是由变异链球菌合成的一类小分子化合物,包括细菌素和聚酮/非核糖体肽。目前已发现的变异链球菌聚酮/非核糖体肽类次级代谢产物主要有mutanobactin、mutanocyclin和mutanofactin,分别由mubmucmuf基因簇合成,参与细菌菌种间竞争、氧化应激、生物膜形成等多项生理活动。本文就变异链球菌3种主要聚酮/非核糖体肽类次级代谢产物mutanobactin、mutanocyclin和mutanofactin的合成、功能和调控等方面进行综述,为进一步研究变异链球菌致龋机制和龋病防治提供新的思路。
  • 图  1  Mutanobactin A、B、C、D的化学结构

    Figure  1.  Chemical structures of mutanobactin A, B, C, and D

    图  2  Reutericyclin A、B、C和mutanocyclin的化学结构

    Figure  2.  Chemical structures of reutericyclin A, B, and C and mutanocyclin

    图  3  Mutanofactin-697的化学结构

    Figure  3.  Chemical structure of mutanofactin-697

  • [1] 陈冬茹, 林焕彩. 变异链球菌致龋机制研究新进展. 四川大学学报(医学版),2022,53(2): 208–213. doi: 10.12182/20220360508
    [2] LEMOS J A, PALMER S R, ZENG L, et al. The biology of Streptococcus mutans. Microbiol Spectr,2019,7(1): 10.1128/microbiolspec.GPP3-0051-2018. doi: 10.1128/microbiolspec.GPP3-0051-2018
    [3] RUIZ B, CHAVEZ A, FORERO A, et al. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol,2010,36(2): 146–167. doi: 10.3109/10408410903489576
    [4] 谢周杰, 张昭, 刘力伟, 等. 变形链球菌中的次级代谢产物及其在口腔生物被膜中的生态功能. 生物工程学报,2017,33(9): 1547–1554. doi: 10.13345/j.cjb.170046
    [5] HEILBRONNER S, KRISMER B, BROTZ-OESTERHELT H, et al. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol,2021,19(11): 726–739. doi: 10.1038/s41579-021-00569-w
    [6] HAMADA S, OOSHIMA T. Inhibitory spectrum of a bacteriocinlike substance (mutacin) produced by some strains of Streptococcus mutans. J Dent Res,1975,54(1): 140–145. doi: 10.1177/00220345750540010801
    [7] QI F, CHEN P, CAUFIELD P W. Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans, CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol,2000,66(8): 3221–3229. doi: 10.1128/AEM.66.8.3221-3229.2000
    [8] NOVAK J, CAUFIELD P W, MILLER E J. Isolation and biochemical characterization of a novel lantibiotic mutacin from Streptococcus mutans. J Bacteriol,1994,176(14): 4316–4320. doi: 10.1128/jb.176.14.4316-4320.1994
    [9] QI F, CHEN P, CAUFIELD P W. Purification of mutacin Ⅲ from group Ⅲ Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol,1999,65(9): 3880–3887. doi: 10.1128/AEM.65.9.3880-3887.1999
    [10] HILLMAN J D, NOVAK J, SAGURA E, et al. Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect Immun,1998,66(6): 2743–2749. doi: 10.1128/IAI.66.6.2743-2749.1998
    [11] MOTA-MEIRA M, LACROIX C, LAPOINTE G, et al. Purification and structure of mutacin B-Ny266: a new lantibiotic produced by Streptococcus mutans. FEBS Letters,1997,410(2/3): 275–279. doi: 10.1016/s0014-5793(97)00425-0
    [12] YONEZAWA H, KURAMITSU H K. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother,2005,49(2): 541–548. doi: 10.1128/AAC.49.2.541-548.2005
    [13] ROBSON C L, WESCOMBE P A, KLESSE N A,et al. Isolation and partial characterization of the Streptococcus mutans type AⅡ lantibiotic mutacin K8. Microbiology (Reading),2007,153(Pt 5): 1631–1641. doi: 10.1099/mic.0.2006/003756-0
    [14] QI F, CHEN P, CAUFIELD P W. The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin Ⅳ. Appl Environ Microbiol,2001,67(1): 15–21. doi: 10.1128/AEM.67.1.15-21.2001
    [15] HALE J D, TING Y T, JACK R W, et al. Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol,2005,71(11): 7613–7617. doi: 10.1128/AEM.71.11.7613-7617.2005
    [16] BALAKRISHNAN M, SIMMONDS R S, CARNE A, et al. Streptococcus mutans strain N produces a novel low molecular mass non-lantibiotic bacteriocin. FEMS Microbiol Lett,2000,183(1): 165–169. doi: 10.1111/j.1574-6968.2000.tb08952.x
    [17] XIE Z, OKINAGA T, NIU G, et al. Identification of a novel bacteriocin regulatory system in Streptococcus mutans. Molecular Microbiol,2010,78(6): 1431–1447. doi: 10.1111/j.1365-2958.2010.07417.x
    [18] MERRITT J, QI F. The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol,2012,27(2): 57–69. doi: 10.1111/j.2041-1014.2011.00634.x
    [19] WILLIAMS G J. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr Opin Struct Biol,2013,23(4): 603–612. doi: 10.1016/j.sbi.2013.06.012
    [20] KELLER N P. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol,2019,17(3): 167–180. doi: 10.1038/s41579-018-0121-1
    [21] PALAZZOTTO E, TONG Y, LEE S Y, et al. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv,2019,37(6): 107366. doi: 10.1016/j.biotechadv.2019.03.005
    [22] SUBHAN M, FARYAL R, MACREADIE I. Exploitation of aspergillus terreus for the production of natural statins. J Fungi (Basel),2016,2(2): 13. doi: 10.3390/jof2020013
    [23] LI Y F, TSAI K J S, HARVEY C J B, et al. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol,2016,89: 18–28. doi: 10.1016/j.fgb.2016.01.012
    [24] SUSSMUTH R D, MAINZ A. Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl,2017,56(14): 3770–3821. doi: 10.1002/anie.201609079
    [25] DONIA M S, FISCHBACH M A. HUMAN MICROBIOTA. Small molecules from the human microbiota. Science,2015,349(6246): 1254766. doi: 10.1126/science.1254766
    [26] BUKELSKIS D, DABKEVICIENE D, LUKOSEVICIUTE L, et al. Screening and transcriptional analysis of polyketide synthases and non-ribosomal peptide synthetases in bacterial strains from Krubera-Voronja cave. Front Microbiol,2019,10: 2149. doi: 10.3389/fmicb.2019.02149
    [27] DONIA M S, CIMERMANCIC P, SCHULZE C J, et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell,2014,158(6): 1402–1414. doi: 10.1016/j.cell.2014.08.032
    [28] WU C, CICHEWICZ R, LI Y, et al. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol,2010,76(17): 5815–5826. doi: 10.1128/AEM.03079-09
    [29] WANG X, DU L, YOU J, et al. Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Org Biomol Chem,2012,10(10): 2044–2050. doi: 10.1039/c2ob06856g
    [30] ZVANYCH R, LUKENDA N, LI X, et al. Systems biosynthesis of secondary metabolic pathways within the oral human microbiome member Streptococcus mutans. Mol Biosyst,2015,11(1): 97–104. doi: 10.1039/c4mb00406j
    [31] JOYNER P M, LIU J, ZHANG Z, et al. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org Biomol Chem,2010,8(24): 5486–5489. doi: 10.1039/c0ob00579g
    [32] PULTAR F, HANSEN M E, WOLFRUM S, et al. Mutanobactin D from the human microbiome: total synthesis, configurational assignment, and biological evaluation. J Am Chem Soc,2021,143(27): 10389–10402. doi: 10.1021/jacs.1c04825
    [33] CHATTORAJ P, MOHAPATRA S S, RAO J L, et al. Regulation of transcription by SMU.1349, a TetR family regulator, in Streptococcus mutans. J Bacteriol,2011,193(23): 6605–6613. doi: 10.1128/JB.06122-11
    [34] CHATTORAJ P, BANERJEE A, BISWAS S, et al. ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol,2010,192(5): 1312–1323. doi: 10.1128/JB.01350-09
    [35] WANG Y, CAO W, MERRITT J, et al. Characterization of FtsH essentiality in Streptococcus mutans viagenetic suppression. Front Genet,2021,12: 659220. doi: 10.3389/fgene.2021.659220
    [36] RAINEY K, WILSON L, BARNES S, et al. Quantitative proteomics uncovers the interaction between a virulence factor and mutanobactin synthetases in Streptococcus mutans. mSphere,2019,4(5): e00429-19. doi: 10.1128/mSphere.00429-19
    [37] WITTE G, HARTUNG S, BUTTNER K, et al. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell,2008,30(2): 167–178. doi: 10.1016/j.molcel.2008.02.020
    [38] CHENG X, ZHENG X, ZHOU X, et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol,2016,18(3): 904–922. doi: 10.1111/1462-2920.13123
    [39] HAO T, XIE Z, WANG M, et al. An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. Nat Commun,2019,10(1): 3665. doi: 10.1038/s41467-019-11673-0
    [40] TANG X, KUDO Y, BAKER J L, et al. Cariogenic Streptococcus mutans produces tetramic acid strain-specific antibiotics that impair commensal colonization. ACS Infect Dis,2020,6(4): 563–571. doi: 10.1021/acsinfecdis.9b00365
    [41] TAO L, WANG M, GUAN G, et al. Streptococcus mutans suppresses filamentous growth of Candida albicans through secreting mutanocyclin, an unacylated tetramic acid. Virulence,2022,13(1): 542–557. doi: 10.1080/21505594.2022.2046952
    [42] URANGA C, NELSON K E, EDLUND A, et al. Tetramic acids mutanocyclin and reutericyclin A, produced by streptococcus mutans strain b04sm5 modulate the ecology of anin vitro oral biofilm. Front Oral Health,2021,2: 796140. doi: 10.3389/froh.2021.796140
    [43] BAKER J L, TANG X, LABONTE S, et al. mucG, mucH, and mucI modulate production of mutanocyclin and reutericyclins in Streptococcus mutans B04Sm5. J Bacteriol,2022,204(5): e0004222. doi: 10.1128/jb.00042-22
    [44] LI Z R, SUN J, DU Y, et al. Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nat Chem Biol,2021,17(5): 576–584. doi: 10.1038/s41589-021-00745-2
    [45] ALETI G, BAKER J L, TANG X, et al. Identification of the bacterial biosynthetic gene clusters of the oral microbiome illuminates the unexplored social language of bacteria during health and disease. mBio,2019,10(2): e00321-19. doi: 10.1128/mBio.00321-19
    [46] GUO C J, CHANG F Y, WYCHE T P, et al. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell,2017,168(3): 517–526.e18. doi: 10.1016/j.cell.2016.12.021
    [47] WALSH C T. The chemical versatility of natural-product assembly lines. Acc Chem Res,2008,41(1): 4–10. doi: 10.1021/ar7000414
    [48] WANG H, FEWER D P, HOLM L, et al. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci U S A,2014,111(25): 9259–9264. doi: 10.1073/pnas.1401734111
    [49] JENKE-KODAMA H, SANDMANN A, MULLER R, et al. Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol,2005,22(10): 2027–2039. doi: doi:10.1093/molbev/msi193
    [50] LIU L, HAO T, XIE Z, et al. Genome mining unveils widespread natural product biosynthetic capacity in human oral microbe Streptococcus mutans. Sci Rep,2016,6: 37479. doi: 10.1038/srep37479
    [51] PASCAL ANDREU V, AUGUSTIJN H E, Van Den BERG K, et al. BiG-MAP: an automated pipeline to profile metabolic gene cluster abundance and expression in microbiomes. mSystems,2021,6(5): e0093721. doi: 10.1128/mSystems.00937-21
    [52] HANSEN M E, YASMIN S O, WOLFRUM S, et al. Total synthesis of mutanobactins a, b from the human microbiome: macrocyclization and thiazepanone assembly in a single step. Angew Chem Int Ed Engl,2022,61(28): e202203051. doi: 10.1002/anie.202203051
  • 加载中
图(3)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  5
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2023-03-13
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回