欢迎来到《四川大学学报(医学版)》

新疆鼠尾草花提取物对变异链球菌的抑制活性研究

王丽娃 张莎 王林洋 宫海燕 田树革

王丽娃, 张莎, 王林洋, 等. 新疆鼠尾草花提取物对变异链球菌的抑制活性研究[J]. 四川大学学报(医学版), 2023, 54(3): 539-544. doi: 10.12182/20230560211
引用本文: 王丽娃, 张莎, 王林洋, 等. 新疆鼠尾草花提取物对变异链球菌的抑制活性研究[J]. 四川大学学报(医学版), 2023, 54(3): 539-544. doi: 10.12182/20230560211
WANG Li-wa, ZHANG Sha, WANG Lin-yang, et al. Inhibitory Activity of Flower Extracts from Salvia deserta Schang on Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 539-544. doi: 10.12182/20230560211
Citation: WANG Li-wa, ZHANG Sha, WANG Lin-yang, et al. Inhibitory Activity of Flower Extracts from Salvia deserta Schang on Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 539-544. doi: 10.12182/20230560211

新疆鼠尾草花提取物对变异链球菌的抑制活性研究

doi: 10.12182/20230560211
基金项目: 国家自然科学基金项目(No. 82060748)和新疆维吾尔自治区重大科技项目(No. 2017A03005-2)资助
详细信息
    通讯作者:

    E-mail:tianshuge@xjmu.edu.cn

Inhibitory Activity of Flower Extracts from Salvia deserta Schang on Streptococcus mutans

More Information
  • 摘要:   目的  研究新疆鼠尾草花提取物(Salvia deserta Schang flower extracts, SFE)对变异链球菌(Streptococcus mutans, S. mutans)的体外抑菌活性。  方法  通过琼脂打孔法和微量稀释法测定SFE对S. mutans浮游菌的抑菌作用及对其生长过程的影响;结晶紫染色法和MTT还原试验测定SFE对S. mutans生物膜的影响;蒽酮-硫酸法测定SFE对细菌生物膜产胞外多糖(exopolysaccharides, EPS)量的影响;乳酸脱氢酶(lactate dehydrogenase, LDH)比色法测定S. mutans的胞内LDH活性;采用pH计测定SFE对S. mutans产酸能力的影响。  结果  SFE对S. mutans的最小抑菌浓度(minimum inhibitory concentration, MIC)为14 μg/μL,1/8 MIC到MIC浓度的SFE在30 h内均能抑制S. mutans的生长速度,且与对照组相比能显著抑制其LDH活性(P<0.0001),4 MIC到1/4 MIC浓度的SFE对S. mutans终产酸量有显著抑制作用(P<0.001),并且能有效抑制S. mutans生物膜的形成,同时能使生物膜产生的EPS量明显减少(P<0.01)。  结论  SFE能有效抑制S. mutans及其生物膜活性,初步探讨其抑制机制为:通过减少细菌EPS的产量来干扰微生物的粘附和聚集,从而抑制细菌生物膜的形成;通过降低细菌LDH活性来干扰S. mutans的糖酵解,从而抑制S. mutans产酸。
  • 图  1  新疆鼠尾草花抑菌活性成分化学结构图

    Figure  1.  Chemical structure diagram of antibacterial active components in SFE

    图  2  S. mutans在不同SFE浓度下的生长曲线

    Figure  2.  Growth curves of S. mutans under different concentrations of SFE

    n=3; * P<0.05, **** P<0.0001, vs. control at 30 h.

    图  3  SFE对S. mutans生物膜的影响

    Figure  3.  Effect of SFE on the biofilm fromation of S. mutans

    A: Results of crystal violet assay; B: MTT assay results; C: the effect of SFE treatment on bacterial biofilms was observed by LSCM (SYTO9: green fluorescence, which was used for both the dead and live bacteria; PI: red fluorescence, which was used for dead bacterial cells). n=6; ** P<0.01, **** P<0.0001, vs. control group.

    图  4  SFE对S. mutans产EPS、产酸和LDH活性的影响

    Figure  4.  Effects of SFE on EPS and acid production of S. mutans and its LDH activity

    A: Effect of SFE on EPS production of S. mutans; B: effect of SFE on LDH activity of S. mutans; C: effect of SFE on acid production of S. mutans. n=3; ** P<0.01, *** P<0.001, **** P<0.0001, vs. control group.

  • [1] HU P, LV B B, YANG K X, et al. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int J Med Microbiol,2021,311: 151512. doi: 10.1016/j.ijmm.2021.151512
    [2] ZHANG Y C, ZHU Y, ZUO Y P, et al. Efects of Rhein-8-O-β-D-glucopyranoside on the bioflm formation of streptococcus mutans. Curr Microbiol,2021,78: 323–328. doi: 10.1007/s00284-020-02248-0
    [3] DIMOU I, DRITSAS S, AGGELOPOULOU P, et al. A development of a herbal mouthwash containing a mixture of essential oils and plant extracts and in vitro testing of its antimicrobial efficiency against the planktonic and biofilm-enclosed cariogenic bacterium Streptococcus mutans. Biofouling,2021,37(4): 397–409. doi: 10.1080/08927014.2021.1924693
    [4] 陈东茹, 林焕彩. 变异链球菌致龋机制研究新进展. 四川大学学报(医学版),2022,53(2): 208–213. doi: 10.12182/20220360508
    [5] LYU X, LI C, ZHANG J, et al. A novel small molecule, LCG-N25, inhibits oral streptococcal biofilm. Front microbiol,2021,12: 654692. doi: 10.3389/fmicb.2021.654692
    [6] PHILIP N, BANDARA H, LEISHMAN S J, et al. Inhibitory effects of fruit berry extracts on Streptococcus mutans biofilms. Eur J Oral Sci,2019,127: 122–129. doi: 10.1111/eos.12602
    [7] 黄晓晶, 江山, 蔡志宇, 等. 生物膜状态变异链球菌临床株合成胞外多糖能力的研究. 重庆医科大学学报,2011,36(3): 281–285. doi: 10.13406/j.cnki.cyxb.2011.03.036
    [8] ZAYED S M, ABOULWAFA M, HASHEM A M, et al. Bioflm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Expr,2021,11: 73. doi: 10.1186/s13568-021-01232-6
    [9] BESINIS A, DEPERALTA T, HANDY R D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology,2014,8(1): 1–16. doi: 10.3109/17435390.2012.742935
    [10] 任春晖, 王晓梅, 王新玲, 等. 新疆鼠尾草根中酚酸类化学成分的纯化工艺研究. 西北药学杂志,2021,36(4): 527–532. doi: 10.3969/j.issn.1004-2407.2021.04.002
    [11] 王晓梅, 任春晖, 王新玲, 等. 新疆鼠尾草酚酸类成分对HK-2细胞氧化损伤的保护作用及机制研究. 中国药房,2022,33(19): 2348–2353. doi: 10.6039/j.issn.1001-0408.2022.19.09
    [12] ZHUSSPOVA A, ZHUMALIYEVA G, OGAY V, et al. Immunomodulatory effects of plant extracts from Salvia deserta Schang and Salvia sclarea L. Plants,2022,11(20): 2690. doi: 10.3390/plants11202690
    [13] 王新玲, 王晓梅, 胡君萍, 等. 新疆鼠尾草不同部位不同极性提取物抗氧化活性. 中国实验方剂学杂志,2017,23(23): 62–65. doi: 10.13422/j.cnki.syfjx.2017230062
    [14] WANG L W, WU W X, TIAN S G. Qualitative and quantitative analyses of four active components in different organs of Salvia deserta Schang by high-performance thin-layer chromatography. J Chromatogr Sci,2023,61(3): 225–233. doi: 10.1093/chromsci/bmac014
    [15] JEONG M J, LIM D S, JEONG S J, et al. Anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid in lipopolysaccharide-stimulated MC3T3-E1 osteoblastic cells on a titanium surface. J Dent Sci,2020,20: 221–229. doi: 10.17135/jdhs.2020.20.4.221
    [16] ALMEIDA A A P, NAGHETINI C C, SANTOS V R, et al. Influence of natural coffee compounds, coffee extracts and increased levels of caffeine on the inhibition of Streptococcus mutans. Food Res Int,2012,49: 459–461. doi: 10.1016/j.foodres.2012.07.026
    [17] LIU Y C, HUANG Y X, FAN C, et al. Ursolic acid targets glucosyltransferase and inhibits its activity to prevent Streptococcus mutans biofilm formation. Front microbiol,2021,12: 743305. doi: 10.3389/fmicb.2021.743305
    [18] 阿孜古丽·阿里木, 王启文, 刘阳, 等. 高效液相色谱结合Box-Behnken响应面法优选新疆鼠尾草根萜类成分提取纯化工艺. 中国医院药学杂志,2023,43(8): 855–862. doi: 10.13286/j.1001-5213.2023.08.05
    [19] 杨艾华, 宋姗姗, 王微微. 火炭母提取物对金黄色葡萄球菌的抑菌活性及稳定性研究. 食品与机械,2021,37(11): 148–152. doi: 10.13652/j.issn.1003-5788.2021.11.026
    [20] 吴菊, 王玲, 刘兴容. 黄芩苷对变异链球菌UA159体外的抑制作用. 口腔疾病防治,2021,29(7): 462–467. doi: 10.12016/j.issn.2096-1456.2021.07.005
    [21] KIM M A, KIM J H, NAM O H. Tea extracts differentially inhibit Streptococcus mutans and Streptococcus sobrinus biofilm colonization depending on the steeping temperature. Biofouling,2020,36(3): 256–265. doi: 10.1080/08927014.2020.1755429
    [22] PRIYA A, SELVARAJ A, DIVYA D, et al. In vitro and in vivo anti-infective potential of thymol against early childhood caries causing dual species Candida albicans and Streptococcus mutans. Front Pharmacol,2021,12: 760768. doi: 10.3389/fphar.2021.760768
    [23] ELANGO A V, VASUDEVAN S, SHANMUGAM K, et al. Exploring the anti-caries properties of baicalin against Streptococcus mutans: an in vitro study. Biofouling,2021,37(3): 267–275. doi: 10.1080/08927014.2021.1897789
    [24] TAKAHASHI N, NYVAD B. The role of bacteria in the caries process: ecological perspectives. J Dent Res,2011,90: 294–303. doi: 10.1177/0022034510379602
    [25] 范骏. 翻译后修饰与肿瘤代谢重编程. 中山大学学报 (医学科学版),2022,43(2): 161–172. doi: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0201
    [26] 孙艳伟, 刘雅丽, 赵晓雪, 等. 柠檬精油对变异链球菌产酸及乳酸脱氢酶活性影响的实验研究. 口腔医学研究,2018,34(1): 27–31. doi: 10.13701/j.cnki.kqyxyj.2018.01.007
  • 加载中
图(4)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  8
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-04-18
  • 网络出版日期:  2023-05-10
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回