欢迎来到《四川大学学报(医学版)》

多发性骨髓瘤细胞与骨髓微环境互作机制研究进展

何旎涵 周文

何旎涵, 周文. 多发性骨髓瘤细胞与骨髓微环境互作机制研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 475-481. doi: 10.12182/20230560207
引用本文: 何旎涵, 周文. 多发性骨髓瘤细胞与骨髓微环境互作机制研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 475-481. doi: 10.12182/20230560207
HE Ni-han, ZHOU Wen. Latest Findings on the Mechanism of the Interaction Between Multiple Myeloma Cells and Bone Marrow Microenvironment[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 475-481. doi: 10.12182/20230560207
Citation: HE Ni-han, ZHOU Wen. Latest Findings on the Mechanism of the Interaction Between Multiple Myeloma Cells and Bone Marrow Microenvironment[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 475-481. doi: 10.12182/20230560207

多发性骨髓瘤细胞与骨髓微环境互作机制研究进展

doi: 10.12182/20230560207
详细信息
    作者简介:

    周文,中南大学肿瘤研究所研究员,博士生导师。兼任中国细胞生物学会肿瘤委员会委员等。研究成果以通信作者或第一作者身份发表在Cancer CellAdvanced ScienceNat CommunMicrobiomeLeukemia等期刊上。主持国家自然科学基金委重点和面上项目等课题。主要从事造血系统恶性肿瘤多发性骨髓瘤癌变及耐药机制研究

    通讯作者:

    E-mail:wenzhou@csu.edu.com

Latest Findings on the Mechanism of the Interaction Between Multiple Myeloma Cells and Bone Marrow Microenvironment

More Information
  • 摘要: 多发性骨髓瘤(multiple myeloma, MM)是浆细胞来源的血液系统恶性肿瘤,其发生发展机制主要包括肿瘤细胞遗传学异常和细胞与骨髓微环境(bone marrow microenvironment, BMME)互作。MM细胞在BMME内恶性增殖,通过细胞与细胞外基质的直接或间接互作,促进MM的发生发展。探讨MM细胞与微环境的互作机制,对阐明MM发生发展机制及早诊和治疗有着重要意义。肿瘤的代谢重编程是肿瘤学研究的重点之一。本文总结出微环境中MM的代谢重编程改变和MM代谢与微生物互作的特征,以便于深入了解MM的发生发展及耐药性机制,最终达到挖掘MM治疗的新策略之目的。
  • 图  1  MM肿瘤细胞与微环境的相互作用

    Figure  1.  The interaction between MM cells andthe microenvironment

    VEGR: vascular endothelial growth factor; IFN: interferon; MMP13: matrix metalloproteinase 13; RANKL: receptor activator of nuclear factor-kappa B ligand; PD1: programmed cell death protein 1; PDL1: programmed death ligand 1; IL: interleukin; IL6R: interleukin 6 receptor; IFN: interferon; CCL3: C-C motif chemokine ligand 3; SLC6A9: solute carrier family 6 member 9; CXCR4: C-X-C motif chemokine receptor 4; CXCL12: C-X-C motif chemokine ligand 12; VCAM1: vascular cell adhesion molecule 1; BMSC: bone marrow stromal cells; Gly: glycine.

    表  1  MM骨髓微环境互作细胞及功能

    Table  1.   The functions of interacting cells in bone marrow microenvironment in MM

    CellCytokinesFunctionsRef.
    BMSC IL-6 Stimulating MM cell growth, survival and drug resistance (DR) [19]
    Growth factor, TNF-α MM cell growth, survival, DR, and migration [20]
    VEGF Upregulation of IL-6 secretion [21]
    CD40 & CD40L Increasing MM cell adhesion [21]
    IL-8 Enabling MM cells to recruit new blood vessels in the bone marrow [22]
    BMEC Angiopoietin 1 Up-regulation of angiogenically active factors after MM cell growth promotion by mutual adhesion [23]
    IL-6 , IGF1 MM cell growth [24]
    TGFβ, PDGF, IL-1 Pro-angiogenic molecules [25]
    Osteoclast RANKL Promotion of osteolytic lesions [26]
    MIP-1α Osteoclast formation inducer [27]
    Osteoblast DKK1, IL-3 Inhibition of osteoblast differentiation [28]
     BMSC: bone marrow stromal cells; IL: interleukin; TNF-α: tumor necrosis factor-alpha; VEGF: vascular endothelial growth factor; CD40: CD40 antigen; CD40L: CD40 antigen ligand; IGF1: insulin like growth factor 1; TGFβ: transforming growth factor beta; PDGF: platelet derived growth factor subunit B; RANKL : receptor activator of nuclear factor-kappa B ligand; MIP-1α: macrophage inflammatory protein-1 alpha; DKK1: Dickkopf WNT signaling pathway inhibitor 1.
    下载: 导出CSV
  • [1] LANDGREN O, HULTCRANTZ M, DIAMOND B, et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: the MANHATTAN Nonrandomized Clinical Trial. JAMA Oncol,2021,7(6): 862–868. doi: 10.1001/jamaoncol.2021.0611
    [2] ZANG M, GUO J, LIU L, et al. Cdc37 suppression induces plasma cell immaturation and bortezomib resistance in multiple myeloma via Xbp1s. Oncogenesis,2020,9(3): 31. doi: 10.1038/s41389-020-0216-1
    [3] WALKER B A, MAVROMMATIS K, WARDELL C P, et al. A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia,2019,33(1): 159–170. doi: 10.1038/s41375-018-0196-8
    [4] LI N, JOHNSON D C, WEINHOLD N, et al. Multiple myeloma risk variant at 7p15.3 creates an IRF4-binding site and interferes with CDCA7L expression. Nat Commun,2016,7: 13656. doi: 10.1038/ncomms13656
    [5] MAURA F, BOLLI N, ANGELOPOULOS N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun,2019,10(1): 3835. doi: 10.1038/s41467-019-11680-1
    [6] ZHOU W, YANG Y, XIA J, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell,2013,23(1): 48–62. doi: 10.1016/j.ccr.2012.12.001
    [7] XIA J, HE Y, MENG B, et al. NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma. Mol Oncol,2020,14(4): 763–778. doi: 10.1002/1878-0261.12641
    [8] FENG X, GUO J, AN G, et al. Genetic aberrations and interaction of NEK2 and TP53 accelerate aggressiveness of multiple myeloma. Adv Sci (Weinh),2022,9(9): e2104491. doi: 10.1002/advs.202104491
    [9] KUMAR S K, RAJKUMAR V, KYLE R A, et al. Multiple myeloma. Nat Rev Dis Primers,2017,3: 17046. doi: 10.1038/nrdp.2017.46
    [10] LVJ, SUN H, GONG L, et al. Aberrant metabolic processes promote the immunosuppressive microenvironment in multiple myeloma. Front Immunol,2022,13: 1077768. doi: 10.3389/fimmu.2022.1077768
    [11] KAWANO Y, ZAVIDIJ O, PARK J, et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J Clin Invest,2018,128(6): 2487–2499. doi: 10.1172/JCI88169
    [12] YANG Q, LI X, ZHANG F, et al. Efficacy and Safety of CAR-T therapy for relapse or refractory multiple myeloma: a systematic review and meta-analysis. Int J Med Sci,2021,18(8): 1786–1797. doi: 10.7150/ijms.46811
    [13] MANIER S, SALEM KZ, PARK J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol,2017,14(2): 100–113. doi: 10.1038/nrclinonc.2016.122
    [14] NAKAMURA K, KASSEM S, CLEYNEN A, et al. Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell,2018,33(4): 634–648.e5. doi: 10.1016/j.ccell.2018.02.007
    [15] NATONI A, FARRELL M L, HARRIS S, et al. Sialyltransferase inhibition leads to inhibition of tumor cell interactions with E-selectin, VCAM1, and MADCAM1, and improves survival in a human multiple myeloma mouse model. Haematologica,2020,105(2): 457–467. doi: 10.3324/haematol.2018.212266
    [16] KUANG C, ZHU Y, GUAN Y, et al. COX2 confers bone marrow stromal cells to promoting TNFα/TNFR1β-mediated myeloma cell growth and adhesion. Cell Oncol (Dordr),2021,44(3): 643–659. doi: 10.1007/s13402-021-00590-4
    [17] GAU Y C, YEH T J, HSU C M, et al. Pathogenesis and treatment of myeloma-related bone disease. Int J Mol Sci,2022,23(6): 3112. doi: 10.3390/ijms23063112
    [18] FAIRFIELD H, DUDAKOVIC A, KHATIB C M, et al. Myeloma-modified adipocytes exhibit metabolic dysfunction and a senescence-associated secretory phenotype. Cancer Res,2021,81(3): 634–647. doi: 10.1158/0008-5472.CAN-20-1088
    [19] HIDESHIMA T, CATLEY L, YASUI H, et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood,2006,107(10): 4053–4062. doi: 10.1182/blood-2005-08-3434
    [20] HIDESHIMA T, CHAUHAN D, SCHLOSSMAN R, et al. The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene,2001,20(33): 4519–4527. doi: 10.1038/sj.onc.1204623
    [21] WENTHE J, NASERI S, HELLSTROM A C, et al. Immunostimulatory oncolytic virotherapy for multiple myeloma targeting 4-1BB and/or CD40. Cancer Gene Ther,2020,27(12): 948–959. doi: 10.1038/s41417-020-0176-9
    [22] SALTARELLA I, MORABITO F, GIULIANI N, et al. Prognostic or predictive value of circulating cytokines and angiogenic factors for initial treatment of multiple myeloma in the GIMEMA MM0305 randomized controlled trial. J Hematol Oncol,2019,12(1): 4. doi: 10.1186/s13045-018-0691-4
    [23] TERPOS E, ANARGYROU K, KATODRITOU E, et al. Circulating angiopoietin-1 to angiopoietin-2 ratio is an independent prognostic factor for survival in newly diagnosed patients with multiple myeloma who received therapy with novel antimyeloma agents. Int J Cancer,2012,130(3): 735–742. doi: 10.1002/ijc.26062
    [24] VACC A, RIBATTI D, PRESTA M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood,1999,93(9): 3064–3073. doi: 10.1182/blood.V93.9.3064.409k07_3064_3073
    [25] MURPHY-ULLRICH J E, SUTO M J. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biol,2018,68-69: 28–43. doi: 10.1016/j.matbio.2017.12.009
    [26] LACINA P, BUTRYM A, HUMMINSKI M, et al. Association of RANK and RANKL gene polymorphism with survival and calcium levels in multiple myeloma. Mol Carcinog,2021,60(2): 106–112. doi: 10.1002/mc.23272
    [27] SPATH F, WIBOM C, KROP E J M, et al. Immune marker changes and risk of multiple myeloma: a nested case-control study using repeated pre-diagnostic blood samples. Haematologica,2019,104(12): 2456–2464. doi: 10.3324/haematol.2019.216895
    [28] LI X, WANG J, ZHU S, et al. DKK1 activates noncanonical NF-κB signaling via IL-6-induced CKAP4 receptor in multiple myeloma. Blood Adv,2021,5(18): 3656–3667. doi: 10.1182/bloodadvances.2021004315
    [29] EVANS L A, ANDERSON E A, JESSEN E, et al. Overexpression of the energy metabolism transcriptome within clonal plasma cells is associated with the pathogenesis and outcomes of patients with multiple myeloma. Am J Hematol,2022,97(7): 895–902. doi: 10.1002/ajh.26577
    [30] CHENG Y, SUN F, THORNTON K, et al. FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene,2022,41(32): 3899–3911. doi: 10.1038/s41388-022-02398-4
    [31] BAJPA R, MATULIS S M, WEI C, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene,2016,35(30): 3955–3964. doi: 10.1038/onc.2015.464
    [32] GU Z, XIA J, XU H, et al. NEK2 promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate kinase. J Hematol Oncol,2017,10(1): 17. doi: 10.1186/s13045-017-0392-4
    [33] ABDOLLAHI P, VANDSEMB E N, ELSAADI S, et al. Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple myeloma. FASEB J,2021,35(3): e21344. doi: 10.1096/fj.202001920RR
    [34] TIBULLO D, GIALLONGO C, ROMANO A, et al. Mitochondrial functions, energy metabolism and protein glycosylation are interconnected processes mediating resistance to bortezomib in multiple myeloma cells. Biomolecules,2020,10(5): 696. doi: 10.3390/biom10050696
    [35] WALDSCHMIDT J M, KLOEBER J A, ANAND P, et al. Single-cell profiling reveals metabolic reprogramming as a resistance mechanism in braf-mutated multiple myeloma. Clin Cancer Res,2021,27(23): 6432–6444. doi: 10.1158/1078-0432.CCR-21-2040
    [36] FU J, LI S, FENG R, et al. Multiple myeloma-derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease. J Clin Invest,2016,126(5): 1759–1772. doi: 10.1172/JCI80276
    [37] PERNOW Y, THOREN M, SAAF M, et al. Associations between amino acids and bone mineral density in men with idiopathic osteoporosis. Bone,2010,47(5): 959–965. doi: 10.1016/j.bone.2010.08.017
    [38] XIA J, ZHANG J, WU X, et al. Blocking glycine utilization inhibits multiple myeloma progression by disrupting glutathione balance. Nat Commun,2022,13(1): 4007. doi: 10.1038/s41467-022-31248-w
    [39] WU X, XIA J, ZHANG J, et al. Phosphoglycerate dehydrogenase promotes proliferation and bortezomib resistance through increasing reduced glutathione synthesis in multiple myeloma. Br J Haematol,2020,190(1): 52–66. doi: 10.1111/bjh.16503
    [40] PANARONI C, FULZELE K, MORI T, et al. Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins. Blood,2022,139(6): 876–888. doi: 10.1182/blood.2021013832
    [41] XU G, HUANG S, PENG J, et al. Targeting lipid metabolism in multiple myeloma cells: Rational development of a synergistic strategy with proteasome inhibitors. Br J Pharmacol,2021,178(23): 4741–4757. doi: 10.1111/bph.15653
    [42] LOGIE E, Van PUYVELDE B, CUYPERS B, et al. Ferroptosis induction in multiple myeloma cells triggers dna methylation and histone modification changes associated with cellular senescence. Int J Mol Sci,2021,22(22): 12234. doi: 10.3390/ijms222212234
    [43] FONTANA F, GE X, SU X, et al. Evaluating acetate metabolism for imaging and targeting in multiple myeloma. Clin Cancer Res,2017,23(2): 416–429. doi: 10.1158/1078-0432.CCR-15-2134
    [44] LI Z, LIU H, HE J, et al. Acetyl-CoA synthetase 2: a critical linkage in obesity-induced tumorigenesis in myeloma. Cell Metab,2021,33(1): 78–93.e7. doi: 10.1016/j.cmet.2020.12.011
    [45] JIAN X, ZHU Y, OUYANG J, et al. Alterations of gut microbiome accelerate multiple myeloma progression by increasing the relative abundances of nitrogen-recycling bacteria. Microbiome,2020,8(1): 74. doi: 10.1186/s40168-020-00854-5
    [46] WANG Y, YANG Q, ZHU Y, et al. IntestinalKlebsiella pneumoniae contributes to pneumonia by synthesizing glutamine in multiple myeloma. Cancers (Basel),2022,14(17): 4188. doi: 10.3390/cancers14174188
    [47] BADROS A Z, MEDDEB M, WEIKEL D, et al. Prospective observational study of bisphosphonate-related osteonecrosis of the jaw in multiple myeloma: microbiota profiling and cytokine expression. Front Oncol,2021,11: 704722. doi: 10.3389/fonc.2021.704722
    [48] HU Y, LI J, NI F, et al. CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. Nat Commun,2022,13(1): 5313. doi: 10.1038/s41467-022-32960-3
    [49] El JURDI N, FILALI-MOUHIM A, SALEM I, et al. Gastrointestinal microbiome and mycobiome changes during autologous transplantation for multiple myeloma: results of a prospective pilot study. Biol Blood Marrow Transplant,2019,25(8): 1511–1519. doi: 10.1016/j.bbmt.2019.04.007
    [50] CALCINOTTO A, BREVI A, CHESI M, et al. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat Commun,2018,9(1): 4832. doi: 10.1038/s41467-018-07305-8
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-12
  • 修回日期:  2023-04-22
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回