欢迎来到《四川大学学报(医学版)》

口腔鳞癌来源的游离DNA 通过诱导巨噬细胞极化调控口腔癌细胞系干性和迁移能力

郑适泽 孟琳 任飞龙 任春霞 李杏 王丹丹 孙宏晨

郑适泽, 孟琳, 任飞龙, 等. 口腔鳞癌来源的游离DNA 通过诱导巨噬细胞极化调控口腔癌细胞系干性和迁移能力[J]. 四川大学学报(医学版), 2023, 54(3): 510-516. doi: 10.12182/20230560206
引用本文: 郑适泽, 孟琳, 任飞龙, 等. 口腔鳞癌来源的游离DNA 通过诱导巨噬细胞极化调控口腔癌细胞系干性和迁移能力[J]. 四川大学学报(医学版), 2023, 54(3): 510-516. doi: 10.12182/20230560206
ZHENG Shi-ze, MENG Lin, REN Fei-long, et al. Oral Squamous Cell Carcinoma-Derived Cell-Free DNA Modulates Stemness and Migration of Oral Squamous Cell Carcinoma Cell Line by Inducing M2 Macrophage Polarization[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 510-516. doi: 10.12182/20230560206
Citation: ZHENG Shi-ze, MENG Lin, REN Fei-long, et al. Oral Squamous Cell Carcinoma-Derived Cell-Free DNA Modulates Stemness and Migration of Oral Squamous Cell Carcinoma Cell Line by Inducing M2 Macrophage Polarization[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 510-516. doi: 10.12182/20230560206

口腔鳞癌来源的游离DNA 通过诱导巨噬细胞极化调控口腔癌细胞系干性和迁移能力

doi: 10.12182/20230560206
基金项目: 国家自然科学基金重点国际(地区)合作研究项目(No. 81920108012)和吉林大学研究生创新研究计划项目(No. 101832020CX304)资助
详细信息
    作者简介:

    孙宏晨,吉林大学“唐敖庆学者”卓越教授A岗,主任医师,博士生导师,国家级领军人才,“长白山学者”特聘教授,中华口腔医学会口腔病理学专业委员会主任委员。主要从事牙和骨发育生物学与修复再生研究。作为首席科学家主持国家重点研发专项1项,作为负责人承担包括重点项目和重点国际合作项目在内的国家自然科学基金项目9项。发表国际期刊论文140余篇,H因子45。获国家发明专利授权10件,获得省部级科技进步一等奖1项,二等奖2项。主讲国家《口腔组织病理学》精品课程、精品资源共享课和线下金课,获省级教学成果一等奖2项

    通讯作者:

    E-mail:hcsun@mail.jlu.edu.cn

Oral Squamous Cell Carcinoma-Derived Cell-Free DNA Modulates Stemness and Migration of Oral Squamous Cell Carcinoma Cell Line by Inducing M2 Macrophage Polarization

More Information
  • 摘要:   目的  研究口腔鳞状细胞癌细胞来源的游离DNA对巨噬细胞极化作用,以及极化的巨噬细胞对口腔鳞癌细胞系的干性和迁移能力调控作用。  方法  取病理确诊为口腔鳞状细胞癌的组织标本30例,异常增生的组织标本10例,正常口腔上皮组织标本10例。 通过免疫组化染色、免疫荧光染色检测M2型巨噬细胞在不同口腔组织中数量及位置。收集人舌鳞状细胞癌细胞系Cal-27细胞的条件培养基,纯化并提取游离DNA(cell free DNA, cfDNA)并进行鉴定。用cfDNA处理巨噬细胞,观察细胞形态学变化,RT-qPCR检测极化相关指标表达水平。用cfDNA 诱导后的巨噬细胞条件培养基处理 CAL-27 细胞,RT-qPCR检测其干性基因变化水平;并且通过划痕实验验证cfDNA诱导的巨噬细胞调控肿瘤细胞迁移的能力。  结果  与正常口腔上皮组织相比,异常增生的口腔上皮深层结缔组织和口腔鳞癌间质中M2型巨噬细胞数量较多(P<0.05)。CAL-27细胞分泌长度在 10000~15000 bp的cfDNA。CAL-27细胞分泌的cfDNA可诱导巨噬细胞高表达 M2 型巨噬细胞标记(P<0.05)。cfDNA 处理的巨噬细胞诱导肿瘤细胞高表达肿瘤干性基因(P<0.05) ,同时促进了肿瘤细胞迁移能力(P<0.05)。  结论  口腔鳞状细胞癌细胞来源的cfDNA通过诱导巨噬细胞向 M2 型极化促进口腔癌细胞系干性和迁移。
  • 图  1  M2型巨噬细胞在不同口腔组织中的分布

    Figure  1.  Distribution of M2 macrophages in different types of oral tissues

    A: IHC staining of CD163 (scale bar=200 μm [top], 50 μm [bottom]); B: IF staining of CD163 (scale bar=20 μm).

    图  2  鉴定cfDNA

    Figure  2.  Determination of cfDNA

    图  3  cfDNA对巨噬细胞活性作用

    Figure  3.  Effect of cfDNA on macrophage activity

    ** P <0.01,*** P <0.001, vs. control group.

    图  4  cfDNA 对巨噬细胞的极化作用

    Figure  4.  Effect of cfDNA on gene expression of related cytokines in M1 and M2 macrophages

    A: microscopic image (the yellow arrows are pointed at polarized macrophages); B: the mRNA levels were determined by qPCR. ** P<0.01, *** P<0.001, vs. CTR-CM group, n=3. CTR-CM: control-conditioned medium; cfDNA-CM: conditioned medium of macrophages after induction by cfDNA.

    图  5  cfDNA诱导的巨噬细胞对CAL-27细胞干性基因表达(A)和CAL-27细胞迁移能力(B)的影响

    Figure  5.  Effect of cfDNA-induced macrophages on the expression of stemness-related genes in CAL-27 cells (A) and on the migration ability of CAL-27 cells (B)

    * P <0.05, * * * P <0.001, vs. CTR-CM group, n=3. CTR-CM: control-conditioned medium; cfDNA-CM: conditioned medium of macrophages after induction by cfDNA.

    表  1  引物合成序列

    Table  1.   Gene primer sequences

    Gene (human)Primer sequence (5′-3′)Primer
    length/bp
    β-actin F: GGAGATTACTGCCCTGGCTCCTA 23
    R GACTCATCGTACTCCTGCTTGCTG 22
    CD86 F: TGCTCATCTATACACGGTTACC 22
    R: TGCATAACACCATCATACTCGA 22
    TNF-α F: TGGCGTGGAGCTGAGAGATAACC 23
    R: CGATGCGGCTGATGGTGTGG 20
    IL-6 F: CACTGGTCTTTTGGAGTTTGAG 22
    R: GGACTTTTGTACTCATCTGCAC 22
    CD163 F: ATCAACCCTGCATCTTTAGACA 22
    R: CTTGTTGTCACATGTGATCCAG 22
    CD204 F: GGACACTGATAGCTGCTCCGAATC 24
    R: CACGAGGAGGTAAAGGGCAATCAG 24
    Arg-1 F: GGACCTGCCCTTTGCTGACATC 22
    R: TCTTCTTGACTTCTGCCACCTTGC 24
     TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; Arg-1: arginase 1.
    下载: 导出CSV

    表  2  RT-qPCR引物合成序列

    Table  2.   RT-qPCR primer sequences

    Gene (human)Primer sequence (5′-3′)Primer length/bp
    β-actin F: GGAGATTACTGCCCTGGCTCCTA 23
    R: GACTCATCGTACTCCTGCTTGCTG 24
    SOX2 F: GTGAGCGCCCTGCAGTACAA 20
    R: GCGAGTAGGACATGCTGTAGGTG 23
    OCT4 F: GCTGGATGTCAGGGCTCTTTG 21
    R: TTCAAGAGATTTATCGAGCACCTTC 25
     SOX2: SRY-box transcription factor 2; OCT4: organic cation/carnitine transporter 4.
    下载: 导出CSV
  • [1] SUN L P, XU K, CUI J, et al. Cancerassociated fibroblastderived exosomal miR3825p promotes the migration and invasion of oral squamous cell carcinoma. Oncol Rep,2019,42(4): 1319–1328. doi: 10.3892/or.2019.7255
    [2] IVALDI E, Di MARIO D, PADERNO A, et al. Postoperative radiotherapy (PORT) for early oral cavity cancer (pT1-2, N0-1): a review. Crit Rev Oncol Hematol,2019,143: 67–75. doi: 10.1016/j.critrevonc.2019.08.003
    [3] LINDEMANN A, TAKAHASHI H, PATEL A A, et al. Targeting the DNA damage response in OSCC with TP53 mutations. J Dent Res,2018,97(6): 635–644. doi: 10.1177/0022034518759068
    [4] DAN H, LIU S, LIU J, et al. RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-kappaB pathway in oral squamous cell carcinoma. Mol Oncol,2020,14(4): 795–807. doi: 10.1002/1878-0261.12644
    [5] FREITAS R D, DIAS R B, VIDAL M T A, et al. Inhibition of CAL27 oral squamous carcinoma cell by targeting hedgehog pathway with vismodegib or itraconazole. Front Oncol,2020,10: 563838. doi: 10.3389/fonc.2020.563838
    [6] ZHANG Y Y, ZHANG Z M. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol,2020,17(8): 807–821. doi: 10.1038/s41423-020-0488-6
    [7] ANDERSON N M, SIMON M C. The tumor microenvironment. Current Biol,2020,30(16): R921–R925. doi: 10.1016/j.cub.2020.06.081
    [8] MANDEL P, METAIS P. Nuclear acids in human blood plasma. C R Seances Soc Biol Fil,1948,142(3/4): 241–243.
    [9] MITTRA I, KHARE N K, RAGHURAM G V, et al. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosciences,2015,40(1): 91–111. doi: 10.1007/s12038-015-9508-6
    [10] NIU Z C, TANG W T, LIU T Y, et al. Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Bioch Bioph Sin,2018,50(10): 1007–1017. doi: 10.1093/abbs/gmy104
    [11] KIRIKOVICH S S, TARANOV O S, OMIGOV V V, et al. Ultrastructural analysis of the Krebs-2 ascites cancer cells treated with extracellular double-stranded DNA preparation. Ultrastruct Pathol,2019,43(1): 56–65. doi: 10.1080/01913123.2019.1575499
    [12] GOULD T J, LYSOV Z, LIAW P C. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost,2015,13: S82–S91. doi: 10.1111/jth.12977
    [13] ANUNOBI R, BOONE B A, CHEH N, et al. Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res,2018,226: 181–191. doi: 10.1016/j.jss.2018.02.042
    [14] BRONKHORST A J, UNGERER V, HOLDENRIEDER S. Comparison of methods for the quantification of cell-free DNA isolated from cell culture supernatant. Tumour Biol,2019,41(8): 1010428319866369. doi: 10.1177/1010428319866369
    [15] VANDEWOESTYNE M, Van HOOFSTAT D, FRANSSEN A, et al. Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet,2013,7(2): 316–320. doi: 10.1016/j.fsigen.2012.12.005
    [16] MERKER J D, OXNARD G R, COMPTON C, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol,2018,36: 1631–1641. doi: 10.1200/JCO.2017.76.8671
    [17] WANG J , BETTEGOWDA C. Applications of DNA-based liquid biopsy for central nervous system neoplasms. J Mol Diagn,2017,19(1): 24–34. doi: 10.1016/j.jmoldx.2016.08.007
    [18] HU Z, CHEN H, LONG Y, et al. The main sources of circulating cell-free DNA: apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol,2021,157: 103166. doi: 10.1016/j.critrevonc.2020.103166
    [19] STROUN M, LYAUTEY J, LEDERREY C, et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta,2001,313(1/2): 139–142. doi: 10.1016/s0009-8981(01)00665-9
    [20] THAKUR B K, ZHANG H, BECKER A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res,2014,24(6): 766–769. doi: 10.1038/cr.2014.44
    [21] MOROZKIN E S, LAKTIONOV P P, RYKOVA E Y, et al. Release of nucleic acids by eukaryotic cells in tissue culture. Nucleosides Nucleotides Nucleic Acids,2004,23(6/7): 927–930. doi: 10.1081/NCN-200026042
    [22] BRONKHORST A J, WENTZEL J F, AUCAMP J, et al. Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta,2016,1863(1): 157–165. doi: 10.1016/j.bbamcr.2015.10.022
    [23] AUCAMP J, BRONKHORST A J, PETERS D L, et al. Kinetic analysis, size profiling, and bioenergetic association of DNA released by selected cell lines in vitro. Cell Mol Life Sci,2017,74(14): 2689–2707. doi: 10.1007/s00018-017-2495-z
    [24] WALDVOGEL ABRAMOWSKI S, TIREFORT D, LAU P, et al. 24 are present in blood products and regulate genes of innate immune response. Transfusion,2018,58(7): 1671–1681. doi: 10.1111/trf.14613
    [25] KORABECNA M, ZINKOVA A, BRYNYCHOVA I, et al. Cell-free DNA in plasma as an essential immune system regulator. Sci Rep,2020,10(1): 17478. doi: 10.1038/s41598-020-74288-2
    [26] SMIRNOVA T, BONAPACE L, MACDONALD G, et al. Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget,2016,7(50): 82289–82304. doi: 10.18632/oncotarget.12927
    [27] YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol,2020,877: 173090. doi: 10.1016/j.ejphar.2020.173090
    [28] KANG S, NAKANISHI Y, KIOI Y, et al. Semaphorin 6D reverse signaling controls macrophage lipid metabolism and anti-inflammatory polarization. Nat Immunol,2018,19(6): 561–570. doi: 10.1038/s41590-018-0108-0
    [29] GUO M, HARTLOVA A, GIERLINSKI M, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J,2019,38: e100299. doi: 10.15252/embj.2018100299
    [30] NAQVI I, GUNARATNE R, MCDADE J E, et al. Polymer-mediated inhibition of pro-invasive nucleic acid DAMPs and microvesicles limits pancreatic cancer metastasis. Mol Ther,2018,26(4): 1020–1031. doi: 10.1016/j.ymthe.2018.02.018
    [31] LAUKOVA L, KONECNA B, JANOVICOVA L, et al. Deoxyribonucleases and their applications in biomedicine. Biomolecules,2020,10(7): 1036. doi: 10.3390/biom10071036
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 修回日期:  2023-04-25
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回