Nomographic Model for Predicting Severe Foot Pain in Nurses from Tertiary Hospitals in China
-
摘要:
目的 调查护士足部重度疼痛的发生率及常见部位,明确其危险因素,并构建个体足部重度疼痛风险预测列线图。 方法 采用分层整体抽样方法,于2019年8–12月期间选取在我国351家三级医院的10691名护士,调查足部重度疼痛的发生现状。将可能影响其发生的变量进行单因素分析,明确护士足部重度疼痛发生的影响因素,进一步采用logistic逐步回归分析,筛查足部重度疼痛发生的独立危险因素。将多因素回归分析结果中有统计学意义的因素纳入Nomograph预测模型的构建。通过一致性指数(C-index)和1000个bootstrap样本校准来测量Nomograph预测性能。 结果 10691名护士中发生足部疼痛3419名,发生率为31.98%,其中重度疼痛(VAS 7~10分)发生率为2.27%(243名)。重度疼痛部位多见于双侧脚掌与足跟。研究最终纳入年龄、学历、工作鞋材质、工作鞋舒适程度、足部外伤史、是否合并其他并发症这6个因素,构建了Nomograph预测模型。C-index值为0.706,标准曲线与校准预测曲线贴合良好。 结论 该研究构建的模型具有良好的预测效果,指标简单易得,可为护士预防重度足部疼痛提供借鉴。 Abstract:Objective To investigate the prevalence and common sites of severe foot pain among nurses, to define the risk factors of severe foot pain in nurses in tertiary hospital in China, and to construct a nomograph model for predicting individuals' risks for severe foot pain. Methods Between August 2019 and December 2019, a stratified global sampling method was used to select 10691 nurses from 351 tertiary hospitals in China to investigate the incidence of severe foot pain among them. The variables that may affect the occurrence of severe foot pain were analyzed by single factor analysis to identify the influencing factors of severe foot pain in nurses. Furthermore, the independent risk factors of severe foot pain were analyzed by stepwise logistic regression analysis. The statistically significant factors identified in the multivariate regression analysis were incorporated into the nomograph prediction model. The predictive performance of the nomograph was measured by the consistency index (C-index) and calibrated with 1000 Bootstrap samples. Results A total of 3419 nurses out of the 10691 had foot pain, resulting in an incidence of 31.98%. The incidence of severe pain (VAS score 7-10) was 2.27% (243 of 10691). The locations of severe pain were more commonly found in the soles and heels of both feet. Six factors, including age, education, the material of the work shoes, comfortableness of the work shoes, number of complications, and foot injure history, were incorporated in the nomograph predicting model. The C-index value was 0.706 and the standard curve fitted well with the calibrated prediction curve. Conclusion The risk prediction model constructed in this study showed sound performance in predicting the risk of severe foot pain in nurses, and all the indicators involved are simple and the relevant data are easily obtained. The model can provide reference for preventing severe foot pain in nurses. -
Key words:
- Nurse /
- Foot pain /
- Severe pain /
- Predictive model
-
表 1 护士的临床特征及足部重度疼痛调查结果
Table 1. Clinical features of the nurses covered in the study and the results of the severe foot pain survey
Clinical feature Variable Case % Sex Male 275 2.57 Female 10416 97.42 Age/yr. 18-25 1953 18.26 26-30 3464 32.40 31-40 3958 37.02 41-60 1316 12.30 Body mass index/(kg/m2) <18.5 1345 12.58 18.5-23.99 7429 69.48 24-27.99 1566 14.64 ≥28 351 3.32 Education Secondary 122 1.14 Junior college 2492 23.33 Bachelor 7896 73.85 Postgraduate 181 1.69 Marital status Never married 3247 30.37 Married 7220 67.53 Widowed or divorced 224 2.10 Childbirth 0 4020 37.60 Pregnancy 301 2.82 1 4610 43.12 2 1572 14.70 ≥3 188 1.76 Department Medical department 3244 30.34 Surgery department 4543 42.49 Others 2904 27.16 Professional title Nurse 2597 24.29 Senior nurse 4891 45.74 Supervisor nurse 2718 25.42 (Associate) professor of nursing 485 4.53 Years of nursing experience/year ≤5 3402 31.82 6-10 3465 32.41 11-20 2575 24.09 ≥21 1249 11.68 VAS 1-3 1929 56.42 4-6 1247 36.47 7-10 243 7.10 Pain location Left sole 133 54.73 Right sole 118 48.56 Left heel 102 41.98 Right heel 98 40.33 Quality of pain Swelling pain 142 58.44 Sourness and pain 160 65.84 Stabbing pain 67 27.57 表 2 护士足部重度疼痛的单因素分析
Table 2. Univariate analysis of severe foot pain in nurses
Variable VAS 0-6 (n=10448)/case (%) or $ \bar x \pm s $ VAS 7-10 (n=243)/case (%) or $ \bar x \pm s $ t/χ2 P Age/yr. 31.89±7.278 34.84±8.151 − <0.001 Body mass index/(kg/m2) 23.39±4.560 22.61±4.461 − 0.011 Sex 0.51 0.473 Male 267 (2.6) 8 (3.3) Female 10181 (97.4) 235 (96.7) Highest education achieved 11.18 0.011 Secondary 115 (1.1) 7 (2.9) Junior college 2450 (23.4) 42 (17.3) Bachelor 7707 (73.8) 189 (77.8) Postgraduate 176 (1.7) 5 (2.1) Marital status 14.56 <0.001 Never married 3200 (30.6) 47 (19.3) Married 7031 (67.3) 189 (77.8) Widowed or divorced 217 (2.1) 7 (2.9) Childbirth 16.38 0.003 0 3958 (37.9) 62 (25.5) Pregnancy 291 (2.8) 10 (4.1) 1 4485 (42.9) 125 (51.4) 2 1532 (14.7) 40 (16.5) ≥3 182 (1.7) 6 (2.5) Professional title 5.04 0.169 Nurse 2545 (24.4) 52 (21.4) Senior nurse 4787 (45.8) 104 (42.8) Supervisor nurse 2647 (25.3) 71 (29.2) (Associate) professor of nursing 469 (4.5) 16 (6.6) Department 4.24 0.120 Medical department 3165 (30.3) 79 (32.5) Surgery department 4455 (42.6) 88 (36.2) Others 2828 (27.1) 76 (31.3) Years of nursing experience/year 35.19 <0.001 ≤5 3346 (32.0) 56 (23.0) 6-10 3402 (32.6) 63 (25.9) 11-20 2505 (24.0) 70 (28.8) ≥21 1195 (11.4) 54 (22.2) Nightshift/(times/month) 2.39 0.665 0 2551 (24.4) 66 (27.2) 1 424 (4.1) 13 (5.3) 2-3 1022 (9.8) 23 (9.5) 4-5 3030 (29.0) 64 (26.3) ≥6 3421 (32.7) 77 (31.7) Sleep/(h/d) 15.46 <0.001 <6 h 388 (3.7) 20 (8.2) 6-8 h 9506 (91) 216 (88.9) ≥8 h 554 (5.3) 7 (2.9) Complication 75.21 <0.001 0 7726 (73.9) 123 (50.6) 1 1828 (17.5) 70 (28.8) 2 537 (5.1) 27 (11.1) 3 357 (3.4) 23 (9.5) Foot injury history 50.52 <0.001 No 5587 (53.5) 74 (30.5) Yes 4861 (46.5) 169 (69.5) Footwear type 10.01 0.007 Nursing shoes 8785 (84.1) 186 (76.5) Crocs 1057 (10.1) 36 (14.8) Others 606 (5.8) 21 (8.6) Footwear material 7.87 0.049 Real leather 1618 (15.5) 44 (18.1) Artificial leather 6774 (64.8) 140 (57.6) Cotton 173 (1.7) 8 (3.3) Plastics 1883 (18.0) 51 (21.0) Shape of the toebox 22.89 <0.001 Pointed shoes 130 (1.2) 4 (1.6) Rounded toes 9018 (86.3) 194 (79.8) Square head shoes 1096 (10.5) 30 (12.3) Open toe shoes 204 (2.0) 15 (6.2) Footwear comfort 31.65 <0.001 Very uncomfortable 131 (1.3) 13 (5.3) Uncomfortable 844 (8.1) 22 (9.1) General 3496 (33.5) 84 (34.6) Comfortable 4423 (42.3) 90 (37.0) Very comfortable 1554 (14.9) 34 (14.0) Frequency of changing into clean socks /(times/d) 13.14 0.041 0 820 (7.8) 24 (9.9) 1-2 8296 (79.4) 194 (80.2) 3-5 1099 (10.5) 16 (6.6) ≥6 233 (2.2) 8 (3.3) 表 3 护士足部重度疼痛的多因素logistic回归分析
Table 3. Multivariate logistic regression analysis of severe foot pain in nurses
Variable β OR (95% CI) P Age 0.034 1.03 (1.02-1.05) 0.000 Highest education achieved (secondary) Junior college −0.998 0.37 (0.16-0.87) 0.022 Bachelor −0.710 0.49 (0.22-1.10) 0.085 Postgraduate −0.408 0.67 (0.20-2.21) 0.506 Footwear material (real leather) Artificial leather −0.170 0.84 (0.59-1.21) 0.355 Cotton 0.938 2.56 (1.11-5.86) 0.027 Plastics −0.135 0.87 (0.51-1.49) 0.621 Footwear comfort (very uncomfortable) Uncomfortable −1.238 0.29 (0.14-0.60) 0.001 General −1.121 0.33 (0.17-0.62) 0.001 Comfortable −1.319 0.27 (0.14-0.51) 0.000 Very comfortable −1.263 0.28 (0.14-0.57) 0.000 Complication (0) 1 0.635 1.89 (1.39-2.57) 0.000 2 0.816 2.26 (1.45-3.52) 0.000 3 0.906 2.47 (1.53-4.01) 0.000 Foot injury history (no) Yes 0.731 2.08 (1.56-2.76) 0.000 β: patial regression coefficient; OR: odds ratio; CI: confidence interval. -
[1] SHEIKHZADEH A, GORE C, ZUCKERMAN J D, et al. Perioperating nurses and technicians' perceptions of ergonomic risk factors in the surgical environment. Applied Ergonomics,2008,40(5): 833–839. doi: 10.1016/j.apergo.2008.09.012 [2] AMIN N A, NORDIN R, FATT Q K, et al. Relationship between Psychosocial Risk Factors and Work-Related Musculoskeletal Disorders among Public Hospital Nurses in Malaysia. Ann Occup Environ Med,2014,26(8): 23. doi: 10.1186/s40557-014-0023-2 [3] TOJO M, YAMAGUCHI S, AMANO N, et al. Prevalence and associated factors of foot and ankle pain among nurses at a university hospital in Japan: A cross-sectional study. J Occup Health,2018,60(2): 132–139. doi: 10.1539/joh.17-0174-OA [4] GETIE K, KAHSAY G, KASSAW A, et al. Ankle and Foot Pain and Associated Factors Among Nurses at Ayder Comprehensive Specialized Hospital, Mekelle, Ethiopia: Cross-Sectional Study. J Pain Res,2021,14: 83–92. doi: 10.2147/JPR.S283580 [5] BHATTACHARYA A. Costs of occupational musculoskeletal disorders (MSDs) in the United States. Int J Ind Ergon,2014,44(3): 448–454. doi: 10.1002/14651858.CD008570.pub3 [6] STORHEIM K, ZWART J A. Musculoskeletal disorders and the Global Burden of Disease study. Ann Rheum Dis,2014,73(6): 949–950. doi: 10.1136/annrheumdis-2014-205327 [7] MITTENDORFER-RUTZ E, DORNER T E. Socio-economic factors associated with the 1-year prevalence of severe pain and pain-related sickness absence in the Austrian population. Wien Klin Wochenschr,2018,130(1-2): 4–13. doi: 10.1007/s00508-017-1222-y [8] WU C L, HUNG Y L, WANG Y R, et al. Pain prevalence in hospitalized patients at a tertiary academic medical center: Exploring severe persistent pain. PLoS One,2020,15(12): e0243574. doi: 10.1371/journal.pone.0243574 [9] DENG L X, PATEL K, MIASKOWSKI C, et al. Prevalence and Characteristics of Moderate to Severe Pain among Hospitalized Older Adults. J Am Geriatr Soc,2018,66(9): 1744–1751. doi: 10.1111/jgs.15459 [10] NEALY R, MCCASKILL C, CONAWAY M R, et al. The aching feet of nurses: an exploratory study. Medsurg Nurs,2012,21(6): 354–359. [11] MMRSHALL M, BLAGOJEXIC-BUCKNALL M, RATHOD-MISTRY T, et al. Identifying long-term trajectories of foot pain severity and potential prognostic factors: a population-based cohort study. Arthritis Care Res (Hoboken),2023,75(5): 1123–1131. doi: 10.1002/acr.24823 [12] NEUFELD S K, CERRATO R. Plantar fasciitis: evaluation and treatment. J Am Acad Orthop Surg,2008,16(6): 338–346. doi: 10.5435/00124635-200806000-00006 [13] GATES L S, ARDEN N K, HANNAN M T, et al. Prevalence of foot pain across an international consortium of population-based cohorts. Arthritis Care Res (Hoboken),2019,71(5): 661–670. doi: 10.1002/acr.23829 [14] DUENAS L, AMAL-GOMEZ A, APARICIO I, et al. Influence of age, gender and obesity on pressure discomfort threshold of the foot: a cross-sectional study. Clin Biomech,2021,82: 105252. doi: 10.1016/j.clinbiomech.2020.105252 [15] 林田. 基于生物力学的鞋舒适性评价和设计. 福州: 福州大学, 2014. [16] 丘理. 生物力学技术在制鞋领域的应用. 中国皮革,2004(2): 126–127. doi: 10.13536/j.cnki.issn1001-6813.2004.10.010 [17] 陶凯,王冬梅,王成焘,等. 基于三维有限元静态分析的人体足部生物力学研究. 中国生物医学工程学报,2007(5): 763–766. [18] HENDRY G J, FENOCCHI L, WOODBUM J, et al. Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey. J Foot Ankle Res,2018,11(1): 48. doi: 10.1186/s13047-018-0290-1 [19] HILL C L, GILL T K, MENZ H B, et al. Prevalence and correlates of foot pain in a population-based study: the North West Adelaide health study. J Foot Ankle Res,2008,1(1): 2. doi: 10.1186/1757-1146-1-2 [20] REINA-BUENO M, MUNUERA-MARTINEZ P V, PEREZ-GARCIA S, et al. Foot pain and morphofunctional foot disorders in patients with rheumatoid arthritis: a multicenter cross-sectional study. Int J Environ Res Public Health,2021,18(9): 5042. doi: 10.3390/ijerph18095042 [21] STEWART S, DALBETH N, OTTER S, et al. Clinically-evident tophi are associated with reduced muscle force in the foot and ankle in people with gout: a cross-sectional study. J Foot Ankle Res,2017,10(1): 25. doi: 10.1186/s13047-017-0207-4 -