Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness
-
摘要: 胃肠道微生态(gastrointestinal microecology, GM)系统由胃肠道正常菌群及生活的环境共同构成,对机体健康和诸多疾病的影响已经被广泛研究。GM系统对于肿瘤的影响主要体现在重塑肿瘤微环境(tumor microenvironment, TME)。TME是肿瘤生存的特殊微环境,可通过细胞间接触和分泌因子调节肿瘤细胞的特性,影响肿瘤发生发展。目前认为,肿瘤干细胞(cancer stem cell, CSC)模型是解释肿瘤起源和恶性进展的重要学说,CSC的形成和增殖往往代表着肿瘤侵袭转移和化疗耐药的增加,导致临床不良预后。因此,研究GM系统通过重塑TME而影响CSC特性获得,进而影响肿瘤侵袭转移和化疗耐药的作用和机制,对于临床上理解肿瘤恶性进展和改善肿瘤治疗效果有重要意义。然而由于胃肠道模型单菌含菌水平低、异质性大、远处转移不易溯源等因素,目前的研究还存在很大局限性。本文就GM重塑TME影响肿瘤干性获得及侵袭转移化疗耐药中的研究进展作出综述。Abstract: Gastrointestinal microecology (GM) system is composed of normal gut microbiota and its living environment. The impact of GM on human health and many diseases has been widely studied. The impact of GM system on tumors is mainly reflected in the remodeling of the tumor microenvironment (TME). TME, a special microenvironment that tumors live in, can regulate the characteristics of tumor cells and affect the occurrence and development of tumors through intercellular contact and the secretion of cytokines. At present, cancer stem cell (CSC) model is considered an important theory that explains the origin and malignant progression of tumors. The formation and proliferation of CSC usually represent increased tumor invasion, metastasis, and chemotherapy resistance, resulting in poor clinical prognosis in patients. Therefore, it is important to study the role and mechanism through which GM system affects the acquisition of CSC characteristics through remodeling TME, thereby affecting tumor invasion, metastasis, and chemotherapy resistance. Studies on this topic are of great significance for clinical understanding of tumor malignant progression and improving tumor treatment outcomes. However, due to the low content of single bacteria in the gastrointestinal model, high heterogeneity, and difficulty in tracing distant metastasis, there are still great limitations in the previous research. Herein, we reviewed the research progress in the effect of GM remodeling of TME on the acquisition of tumor stemness, tumor invasion and metastasis, and the resistance to chemotherapy.
-
Key words:
- Gastrointestinal microecology /
- Tumor microenvironment /
- Cancer stem cell
-
图 2 胃肠道微生态在胃癌、结直肠癌肿瘤干性获得中的作用及机制
Figure 2. The role and mechanism of GM in stemness acquisition of gastric cancer and colorectal cancer
Hp: Helicobacter pylori; CagA: cytotoxin-associated gene A; NF-κB: nuclear factor-kappa B; ICB: immune checkpoint blockade; SCFA: short chain fatty acid; ILC: innate lymphoid cell; IL: interleukin; ABHD5: abhydrolase domain containing 5.
图 3 胃肠道微生态在其他消化系统肿瘤干性获得中的作用及机制
Figure 3. The role and mechanism of GM in stemness acquisition of other digestive system tumors
MAMP: microbe-associated molecular patterns; LPS: lipopolysaccharide; LTA: lipoteichoic acid; TLR: Toll-like receptors; STAT3: signal transducer and activator of transcription 3; NF-κB: nuclear factor-kappa B; KRAS: kirsten rat sarcoma viral oncogene; Treg: regulatory T; IL: interleukin; TGF-β: transforming growth factor-beta.
图 4 胃肠道微生态在其他肿瘤干性获得中的作用及机制
Figure 4. The role and mechanism of GM in the stemness acquisition of other tumors
SCFA: short chain fatty acids; HDAC9: human histone deacetylase 9; Foxp3: forkhead box P3; TLR: Toll-like receptors; NF-κB: nuclear factor-kappa B; IL: interleukin; PAHs: polycyclic aromatic hydrocarbons.
-
[1] De MARTEL C, GEORGES D, BRAY F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health,2020,8(2): e180–e190. doi: 10.1016/S2214-109X(19)30488-7 [2] DEJEA C M, FATHI P, CRAIG J M, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science,2018,359(6375): 592–597. doi: 10.1126/science.aah3648 [3] PARKER T M, GUPTA K, PALMA A M, et al. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J,2021,40(17): e107271. doi: 10.15252/embj.2020107271 [4] KUNTZ S, KRIEGHOFF-HENNING E, KATHER J N, et al. Gastrointestinal cancer classification and prognostication from histology using deep learning: systematic review. Eur J Cancer,2021,155: 200–215. doi: 10.1016/j.ejca.2021.07.012 [5] CHO Y, KIM Y K. Cancer stem cells as a potential target to overcome multidrug resistance. Front Oncol,2020,10: 764. doi: 10.3389/fonc.2020.00764 [6] FATEHULLAH A, TERAKADO Y, SAGIRAJU S, et al. A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat Cell Biol,2021,23(12): 1299–1313. doi: 10.1038/s41556-021-00793-9 [7] LIANG Y, YANG L, XIE J. The role of the hedgehog pathway in chemoresistance of gastrointestinal cancers. Cells,2021,10(8): 2030. doi: 10.3390/cells10082030 [8] ZHANG Z Z, YU W X, ZHENG M, et al. PIN1 inhibition sensitizes chemotherapy in gastric cancer cells by targeting stem cell-like traits and multiple biomarkers. Mol Cancer Ther,2020,19(3): 906–919. doi: 10.1158/1535-7163.MCT-19-0656 [9] JIANG N, ZOU C, ZHU Y, et al. HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics,2020,10(6): 2553–2570. doi: 10.7150/thno.41120 [10] BUCKLEY A M, LYNAM-LENNON N, O'NEILL H, et al. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol,2020,17(5): 298–313. doi: 10.1038/s41575-019-0247-2 [11] JU F, ATYAH M M, HORSTMANN N, et al. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther,2022,13(1): 233. doi: 10.1186/s13287-022-02904-1 [12] HAN J, WON M, KIM J H, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev,2020,49(22): 7856–7878. doi: 10.1039/d0cs00379d [13] YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther,2020,5(1): 8. doi: 10.1038/s41392-020-0110-5 [14] KOGA Y. Microbiota in the stomach and application of probiotics to gastroduodenal diseases. World J Gastroenterol,2022,28(47): 6702–6715. doi: 10.3748/wjg.v28.i47.6702 [15] STEWART O A, WU F, CHEN Y. The role of gastric microbiota in gastric cancer. Gut Microbes,2020,11(5): 1220–1230. doi: 10.1080/19490976.2020.1762520 [16] HE J, HU W, OUYANG Q, et al. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett,2022,542: 215764. doi: 10.1016/j.canlet.2022.215764 [17] KWON S K, PARK J C, KIM K H, et al. Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice. Gut,2022,71(7): 1266–1276. doi: 10.1136/gutjnl-2021-324489 [18] LARABI A, BARNICH N, NGUYEN H T T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy,2020,16(1): 38–51. doi: 10.1080/15548627.2019.1635384 [19] MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science,2020,369(6510): 1481–1489. doi: 10.1126/science.abc3421 [20] YANG W, YU T, HUANG X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun,2020,11(1): 4457. doi: 10.1038/s41467-020-18262-6 [21] OLIPHANT K, ALLEN-VERCOE E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome,2019,7(1): 91. doi: 10.1186/s40168-019-0704-8 [22] FU A, YAO B, DONG T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell,2022,185(8): 1356–1372.e26. doi: 10.1016/j.cell.2022.02.027 [23] ZHENG H T, ZHAO Q Y, DING Y, et al. Investigation of the relationships among respiratory syncytial virus infection, T cell immune response and intestinal flora. Eur Rev Med Pharmacol Sci,2023,27(6): 2671–2678. doi: 10.26355/eurrev_202303_31804 [24] PONZIANI F R, BHOORI S, CASTELLI C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology,2019,69(1): 107–120. doi: 10.1002/hep.30036 [25] HERNÁNDEZ-AQUINO E, MURIEL P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol,2018,24(16): 1679–1707. doi: 10.3748/wjg.v24.i16.1679 [26] BEHARY J, AMORIM N, JIANG X T, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun,2021,12(1): 187. doi: 10.1038/s41467-020-20422-7 [27] YANG Q, ZHANG J, ZHU Y. Potential roles of the gut microbiota in pancreatic carcinogenesis and therapeutics. Front Cell Infect Microbiol,2022,12: 872019. doi: 10.3389/fcimb.2022.872019 [28] LIU Y, JIN X, LAN X, et al. SPECT imaging of colorectal cancer by targeting CD 133 receptor with 99mTc-labeled monoclonal antibody. Q J Nucl Med Mol Imaging,2019,63(2): 216–224. doi: 10.23736/S1824-4785.16.02864-8 [29] PENG X, YANG R, SONG J, et al. Calpain2 upregulation regulates emt-mediated pancreatic cancer metastasis via the Wnt/β-Catenin signaling pathway. Front Med (Lausanne),2022,9: 783592. doi: 10.3389/fmed.2022.783592 [30] GEORGIOU K, MARINOV B, FAROOQI A A, et al. Gut microbiota in lung cancer: where do we stand? Int J Mol Sci,2021,22(19): 10429. doi: 10.3390/ijms221910429 [31] GUO Y, YUAN W, LYU N, et al. Association Studies on Gut and Lung Microbiomes in Patients with Lung Adenocarcinoma. Microorganisms,2023,11(3): 546. doi: 10.3390/microorganisms11030546 [32] LIU F, LI J, GUAN Y, et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int J Biol Sci,2019,15(11): 2381–2392. doi: 10.7150/ijbs.35980 [33] WEDGWOOD S, GERARD K, HALLORAN K, et al. Intestinal dysbiosis and the developing lung: the role of Toll-like receptor 4 in the gut-lung axis. Front Immunol,2020,11: 357. doi: 10.3389/fimmu.2020.00357 [34] TANG J, XU L, ZENG Y, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol,2021,91: 107272. doi: 10.1016/j.intimp.2020.107272 [35] JENKINS S V, ROBESON M S 2nd, GRIFFIN R J, et al. Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res,2019,79(23): 5999–6009. doi: 10.1158/0008-5472.CAN-18-4108 [36] DESSEIN R, BAUDUIN M, GRANDJEAN T, et al. Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice. Crit Care,2020,24(1): 611. doi: 10.1186/s13054-020-03320-8 [37] LYNCH S V, VERCELLI D. Microbiota, epigenetics, and trained immunity. convergent drivers and mediators of the asthma trajectory from pregnancy to childhood. Am J Respir Crit Care Med,2021,203(7): 802–808. doi: 10.1164/rccm.202010-3779PP [38] COREY S, KVEDERIS L, KINGSBURY C, et al. Gut microbiome: lactation, childbirth, lung dysbiosis, animal modeling, stem cell treatment, and CNS disorders. CNS Neurol Disord Drug Targets,2019,18(9): 687–694. doi: 10.2174/1871527318666191021145252 [39] MEHRIAN-SHAI R, REICHARDT J K V, HARRIS C C, et al. The gut-brain axis, paving the way to brain cancer. Trends Cancer,2019,5(4): 200–207. doi: 10.1016/j.trecan.2019.02.008 [40] Di MODICA M, GARGARI G, REGONDI V, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res,2021,81(8): 2195–2206. doi: 10.1158/0008-5472.CAN-20-1659 [41] SHA S, NI L, STEFIL M, et al. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol,2020,61(Suppl 1): S43–S50. doi: 10.4111/icu.2020.61.S1.S43 [42] MATSUSHITA M, FUJITA K, HAYASHI T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res,2021,81(15): 4014–4026. doi: 10.1158/0008-5472.CAN-20-4090 [43] KURE A, TSUKIMI T, ISHII C, et al. Gut environment changes due to androgen deprivation therapy in patients with prostate cancer. Prostate Cancer Prostatic Dis,2022. doi: 10.1038/s41391-022-00536-3 [44] WANG R, YANG X, LIU J, et al. Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat Commun,2022,13(1): 2522. doi: 10.1038/s41467-022-30240-8 [45] DAVAR D, ZAROUR H M. Facts and hopes for gut microbiota interventions in cancer immunotherapy. Clin Cancer Res,2022,28(20): 4370–4384. doi: 10.1158/1078-0432.CCR-21-1129 [46] WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab,2018,27(1): 136–150.e5. doi: 10.1016/j.cmet.2017.11.001 [47] WANG Y P, LI J T, QU J, et al. Metabolite sensing and signaling in cancer. J Biol Chem,2020,295(33): 11938–11946. doi: 10.1074/jbc.REV119.007624 [48] THORSSON V, GIBBS D L, BROWN S D, et al. The immune landscape of cancer. Immunity,2018,48(4): 812–830.e14. doi: 10.1016/j.immuni.2018.03.023 [49] MENG C, BAI C, BROWN T D, et al. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics,2018,16(1): 33–49. doi: 10.1016/j.gpb.2017.06.002 -