欢迎来到《四川大学学报(医学版)》

胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展

何军舰 胡长江 杨仕明

何军舰, 胡长江, 杨仕明. 胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 482-490. doi: 10.12182/20230560107
引用本文: 何军舰, 胡长江, 杨仕明. 胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 482-490. doi: 10.12182/20230560107
HE Jun-jian, HU Chang-jiang, YANG Shi-ming. Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 482-490. doi: 10.12182/20230560107
Citation: HE Jun-jian, HU Chang-jiang, YANG Shi-ming. Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 482-490. doi: 10.12182/20230560107

胃肠道微生态重塑肿瘤微环境影响肿瘤干性的研究进展

doi: 10.12182/20230560107
基金项目: 国家重点基础研究发展计划项目(No. 2018YFA0507900)资助
详细信息
    作者简介:

    杨仕明,陆军军医大学新桥医院消化内科主任,主任医师、教授,博士研究生导师。中华医学会消化病学分会委员、中华医学会消化病学分会肿瘤学组副组长、中华医学会老年病学分会消化学组委员、重庆市医学会消化病学分会主任委员、重庆市医师协会消化医师分会副会长、全军消化病学专委会常委、国家重点研发计划首席科学家。从事消化医疗、教学、科研30年,具有扎实的理论基础和丰富的临床经验,研究方向为消化系肿瘤的防治及其机制,致力于胃黏膜癌变的早期诊断及基因治疗、胃肠微生态与肿瘤疾病关系及机制的探索研究。先后承担国家重点研发专项1项、国家自然科学基金中以合作项目1项、主持国家自然科学基金10余项、重庆市杰出青年科学基金1项、重庆市重点攻关项目1项,发表SCI论文80余篇,主编、副主编专著各1部;获得国家专利1项、获省部级二等奖4项、获中华医学一等奖1项。先后获评重庆市“十大杰出青年”、总后科技新星、总后优秀教师、军队育才银奖、重庆市首批医学领军人才、陆军军医大学拔尖人才等荣誉

    通讯作者:

    E-mail:Yangshiming@tmmu.edu.cn

Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness

More Information
  • 摘要: 胃肠道微生态(gastrointestinal microecology, GM)系统由胃肠道正常菌群及生活的环境共同构成,对机体健康和诸多疾病的影响已经被广泛研究。GM系统对于肿瘤的影响主要体现在重塑肿瘤微环境(tumor microenvironment, TME)。TME是肿瘤生存的特殊微环境,可通过细胞间接触和分泌因子调节肿瘤细胞的特性,影响肿瘤发生发展。目前认为,肿瘤干细胞(cancer stem cell, CSC)模型是解释肿瘤起源和恶性进展的重要学说,CSC的形成和增殖往往代表着肿瘤侵袭转移和化疗耐药的增加,导致临床不良预后。因此,研究GM系统通过重塑TME而影响CSC特性获得,进而影响肿瘤侵袭转移和化疗耐药的作用和机制,对于临床上理解肿瘤恶性进展和改善肿瘤治疗效果有重要意义。然而由于胃肠道模型单菌含菌水平低、异质性大、远处转移不易溯源等因素,目前的研究还存在很大局限性。本文就GM重塑TME影响肿瘤干性获得及侵袭转移化疗耐药中的研究进展作出综述。
  • 图  1  胃肠道微生态重塑肿瘤微环境激活干性相关通路,促进肿瘤干细胞形成

    Figure  1.  GM remodels TME to activate stemness-related pathways and promote the formation of CSC

    LPS/LTA: lipopolysaccharide/lipoteichoic acid; SCFA: short chain fatty acid; Treg: regulatory T cell; ILC: innate lymphoid cell.

    图  2  胃肠道微生态在胃癌、结直肠癌肿瘤干性获得中的作用及机制

    Figure  2.  The role and mechanism of GM in stemness acquisition of gastric cancer and colorectal cancer

    Hp: Helicobacter pylori; CagA: cytotoxin-associated gene A; NF-κB: nuclear factor-kappa B; ICB: immune checkpoint blockade; SCFA: short chain fatty acid; ILC: innate lymphoid cell; IL: interleukin; ABHD5: abhydrolase domain containing 5.

    图  3  胃肠道微生态在其他消化系统肿瘤干性获得中的作用及机制

    Figure  3.  The role and mechanism of GM in stemness acquisition of other digestive system tumors

    MAMP: microbe-associated molecular patterns; LPS: lipopolysaccharide; LTA: lipoteichoic acid; TLR: Toll-like receptors; STAT3: signal transducer and activator of transcription 3; NF-κB: nuclear factor-kappa B; KRAS: kirsten rat sarcoma viral oncogene; Treg: regulatory T; IL: interleukin; TGF-β: transforming growth factor-beta.

    图  4  胃肠道微生态在其他肿瘤干性获得中的作用及机制

    Figure  4.  The role and mechanism of GM in the stemness acquisition of other tumors

    SCFA: short chain fatty acids; HDAC9: human histone deacetylase 9; Foxp3: forkhead box P3; TLR: Toll-like receptors; NF-κB: nuclear factor-kappa B; IL: interleukin; PAHs: polycyclic aromatic hydrocarbons.

  • [1] De MARTEL C, GEORGES D, BRAY F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health,2020,8(2): e180–e190. doi: 10.1016/S2214-109X(19)30488-7
    [2] DEJEA C M, FATHI P, CRAIG J M, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science,2018,359(6375): 592–597. doi: 10.1126/science.aah3648
    [3] PARKER T M, GUPTA K, PALMA A M, et al. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J,2021,40(17): e107271. doi: 10.15252/embj.2020107271
    [4] KUNTZ S, KRIEGHOFF-HENNING E, KATHER J N, et al. Gastrointestinal cancer classification and prognostication from histology using deep learning: systematic review. Eur J Cancer,2021,155: 200–215. doi: 10.1016/j.ejca.2021.07.012
    [5] CHO Y, KIM Y K. Cancer stem cells as a potential target to overcome multidrug resistance. Front Oncol,2020,10: 764. doi: 10.3389/fonc.2020.00764
    [6] FATEHULLAH A, TERAKADO Y, SAGIRAJU S, et al. A tumour-resident Lgr5+ stem-cell-like pool drives the establishment and progression of advanced gastric cancers. Nat Cell Biol,2021,23(12): 1299–1313. doi: 10.1038/s41556-021-00793-9
    [7] LIANG Y, YANG L, XIE J. The role of the hedgehog pathway in chemoresistance of gastrointestinal cancers. Cells,2021,10(8): 2030. doi: 10.3390/cells10082030
    [8] ZHANG Z Z, YU W X, ZHENG M, et al. PIN1 inhibition sensitizes chemotherapy in gastric cancer cells by targeting stem cell-like traits and multiple biomarkers. Mol Cancer Ther,2020,19(3): 906–919. doi: 10.1158/1535-7163.MCT-19-0656
    [9] JIANG N, ZOU C, ZHU Y, et al. HIF-1ɑ-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics,2020,10(6): 2553–2570. doi: 10.7150/thno.41120
    [10] BUCKLEY A M, LYNAM-LENNON N, O'NEILL H, et al. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat Rev Gastroenterol Hepatol,2020,17(5): 298–313. doi: 10.1038/s41575-019-0247-2
    [11] JU F, ATYAH M M, HORSTMANN N, et al. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther,2022,13(1): 233. doi: 10.1186/s13287-022-02904-1
    [12] HAN J, WON M, KIM J H, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev,2020,49(22): 7856–7878. doi: 10.1039/d0cs00379d
    [13] YANG L, SHI P, ZHAO G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther,2020,5(1): 8. doi: 10.1038/s41392-020-0110-5
    [14] KOGA Y. Microbiota in the stomach and application of probiotics to gastroduodenal diseases. World J Gastroenterol,2022,28(47): 6702–6715. doi: 10.3748/wjg.v28.i47.6702
    [15] STEWART O A, WU F, CHEN Y. The role of gastric microbiota in gastric cancer. Gut Microbes,2020,11(5): 1220–1230. doi: 10.1080/19490976.2020.1762520
    [16] HE J, HU W, OUYANG Q, et al. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett,2022,542: 215764. doi: 10.1016/j.canlet.2022.215764
    [17] KWON S K, PARK J C, KIM K H, et al. Human gastric microbiota transplantation recapitulates premalignant lesions in germ-free mice. Gut,2022,71(7): 1266–1276. doi: 10.1136/gutjnl-2021-324489
    [18] LARABI A, BARNICH N, NGUYEN H T T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy,2020,16(1): 38–51. doi: 10.1080/15548627.2019.1635384
    [19] MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science,2020,369(6510): 1481–1489. doi: 10.1126/science.abc3421
    [20] YANG W, YU T, HUANG X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun,2020,11(1): 4457. doi: 10.1038/s41467-020-18262-6
    [21] OLIPHANT K, ALLEN-VERCOE E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome,2019,7(1): 91. doi: 10.1186/s40168-019-0704-8
    [22] FU A, YAO B, DONG T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell,2022,185(8): 1356–1372.e26. doi: 10.1016/j.cell.2022.02.027
    [23] ZHENG H T, ZHAO Q Y, DING Y, et al. Investigation of the relationships among respiratory syncytial virus infection, T cell immune response and intestinal flora. Eur Rev Med Pharmacol Sci,2023,27(6): 2671–2678. doi: 10.26355/eurrev_202303_31804
    [24] PONZIANI F R, BHOORI S, CASTELLI C, et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology,2019,69(1): 107–120. doi: 10.1002/hep.30036
    [25] HERNÁNDEZ-AQUINO E, MURIEL P. Beneficial effects of naringenin in liver diseases: molecular mechanisms. World J Gastroenterol,2018,24(16): 1679–1707. doi: 10.3748/wjg.v24.i16.1679
    [26] BEHARY J, AMORIM N, JIANG X T, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun,2021,12(1): 187. doi: 10.1038/s41467-020-20422-7
    [27] YANG Q, ZHANG J, ZHU Y. Potential roles of the gut microbiota in pancreatic carcinogenesis and therapeutics. Front Cell Infect Microbiol,2022,12: 872019. doi: 10.3389/fcimb.2022.872019
    [28] LIU Y, JIN X, LAN X, et al. SPECT imaging of colorectal cancer by targeting CD 133 receptor with 99mTc-labeled monoclonal antibody. Q J Nucl Med Mol Imaging,2019,63(2): 216–224. doi: 10.23736/S1824-4785.16.02864-8
    [29] PENG X, YANG R, SONG J, et al. Calpain2 upregulation regulates emt-mediated pancreatic cancer metastasis via the Wnt/β-Catenin signaling pathway. Front Med (Lausanne),2022,9: 783592. doi: 10.3389/fmed.2022.783592
    [30] GEORGIOU K, MARINOV B, FAROOQI A A, et al. Gut microbiota in lung cancer: where do we stand? Int J Mol Sci,2021,22(19): 10429. doi: 10.3390/ijms221910429
    [31] GUO Y, YUAN W, LYU N, et al. Association Studies on Gut and Lung Microbiomes in Patients with Lung Adenocarcinoma. Microorganisms,2023,11(3): 546. doi: 10.3390/microorganisms11030546
    [32] LIU F, LI J, GUAN Y, et al. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int J Biol Sci,2019,15(11): 2381–2392. doi: 10.7150/ijbs.35980
    [33] WEDGWOOD S, GERARD K, HALLORAN K, et al. Intestinal dysbiosis and the developing lung: the role of Toll-like receptor 4 in the gut-lung axis. Front Immunol,2020,11: 357. doi: 10.3389/fimmu.2020.00357
    [34] TANG J, XU L, ZENG Y, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol,2021,91: 107272. doi: 10.1016/j.intimp.2020.107272
    [35] JENKINS S V, ROBESON M S 2nd, GRIFFIN R J, et al. Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Cancer Res,2019,79(23): 5999–6009. doi: 10.1158/0008-5472.CAN-18-4108
    [36] DESSEIN R, BAUDUIN M, GRANDJEAN T, et al. Antibiotic-related gut dysbiosis induces lung immunodepression and worsens lung infection in mice. Crit Care,2020,24(1): 611. doi: 10.1186/s13054-020-03320-8
    [37] LYNCH S V, VERCELLI D. Microbiota, epigenetics, and trained immunity. convergent drivers and mediators of the asthma trajectory from pregnancy to childhood. Am J Respir Crit Care Med,2021,203(7): 802–808. doi: 10.1164/rccm.202010-3779PP
    [38] COREY S, KVEDERIS L, KINGSBURY C, et al. Gut microbiome: lactation, childbirth, lung dysbiosis, animal modeling, stem cell treatment, and CNS disorders. CNS Neurol Disord Drug Targets,2019,18(9): 687–694. doi: 10.2174/1871527318666191021145252
    [39] MEHRIAN-SHAI R, REICHARDT J K V, HARRIS C C, et al. The gut-brain axis, paving the way to brain cancer. Trends Cancer,2019,5(4): 200–207. doi: 10.1016/j.trecan.2019.02.008
    [40] Di MODICA M, GARGARI G, REGONDI V, et al. Gut microbiota condition the therapeutic efficacy of trastuzumab in HER2-positive breast cancer. Cancer Res,2021,81(8): 2195–2206. doi: 10.1158/0008-5472.CAN-20-1659
    [41] SHA S, NI L, STEFIL M, et al. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol,2020,61(Suppl 1): S43–S50. doi: 10.4111/icu.2020.61.S1.S43
    [42] MATSUSHITA M, FUJITA K, HAYASHI T, et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res,2021,81(15): 4014–4026. doi: 10.1158/0008-5472.CAN-20-4090
    [43] KURE A, TSUKIMI T, ISHII C, et al. Gut environment changes due to androgen deprivation therapy in patients with prostate cancer. Prostate Cancer Prostatic Dis,2022. doi: 10.1038/s41391-022-00536-3
    [44] WANG R, YANG X, LIU J, et al. Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat Commun,2022,13(1): 2522. doi: 10.1038/s41467-022-30240-8
    [45] DAVAR D, ZAROUR H M. Facts and hopes for gut microbiota interventions in cancer immunotherapy. Clin Cancer Res,2022,28(20): 4370–4384. doi: 10.1158/1078-0432.CCR-21-1129
    [46] WANG T, FAHRMANN J F, LEE H, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab,2018,27(1): 136–150.e5. doi: 10.1016/j.cmet.2017.11.001
    [47] WANG Y P, LI J T, QU J, et al. Metabolite sensing and signaling in cancer. J Biol Chem,2020,295(33): 11938–11946. doi: 10.1074/jbc.REV119.007624
    [48] THORSSON V, GIBBS D L, BROWN S D, et al. The immune landscape of cancer. Immunity,2018,48(4): 812–830.e14. doi: 10.1016/j.immuni.2018.03.023
    [49] MENG C, BAI C, BROWN T D, et al. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics,2018,16(1): 33–49. doi: 10.1016/j.gpb.2017.06.002
  • 加载中
图(4)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2023-04-13
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回