[1] |
MARTINON F, BURNS K, TSCHOPP J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell,2002,10(2): 417–426. doi: 10.1016/s1097-2765(02)00599-3
|
[2] |
BROZ P, DIXIT V M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol,2016,16(7): 407–420. doi: 10.1038/nri.2016.58
|
[3] |
RATHINAM V A, FITZGERALD K A. Inflammasome complexes: emerging mechanisms and effector functions. Cell,2016,165(4): 792–800. doi: 10.1016/j.cell.2016.03.046
|
[4] |
PAIK S, KIM J K, SILWAL P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol,2021,18(5): 1141–1160. doi: 10.1038/s41423-021-00670-3
|
[5] |
Von MOLTKE J, AYRES J S, KOFOED E M, et al. Recognition of bacteria by inflammasomes. Annu Rev Immunol,2013,31: 73–106. doi: 10.1146/annurev-immunol-032712-095944
|
[6] |
SWANSON K V, DENG M, TING J P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol,2019,19(8): 477–489. doi: 10.1038/s41577-019-0165-0
|
[7] |
XUE Y, ENOSI TUIPULOTU D, TAN W H, et al. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol,2019,40(11): 1035–1052. doi: 10.1016/j.it.2019.09.005
|
[8] |
SMOLEN J S, ALETAHA D, BARTON A, et al. Rheumatoid arthritis. Nat Rev Dis Primers,2018,4: 18001. doi: 10.1038/nrdp.2018.1
|
[9] |
KOLLY L, BUSSO N, PALMER G, et al. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology,2010,129(2): 178–185. doi: 10.1111/j.1365-2567.2009.03174.x
|
[10] |
ROSENGREN S, HOFFMAN H M, BUGBEE W, et al. Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis,2005,64(5): 708–714. doi: 10.1136/ard.2004.025577
|
[11] |
CHOULAKI C, PAPADAKI G, REPA A, et al. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther,2015,17: 257. doi: 10.1186/s13075-015-0775-2
|
[12] |
ZHANG Y, ZHENG Y, LI H. NLRP3 inflammasome plays an important role in the pathogenesis of collagen-induced arthritis. Mediators Inflamm,2016,2016: 9656270. doi: 10.1155/2016/9656270
|
[13] |
GUO C, FU R, WANG S, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol,2018,194(2): 231–243. doi: 10.1111/cei.13167
|
[14] |
DONG X, ZHENG Z, LIN P, et al. ACPAs promote IL-1beta production in rheumatoid arthritis by activating the NLRP3 inflammasome. Cell Mol Immunol,2020,17(3): 261–271. doi: 10.1038/s41423-019-0201-9
|
[15] |
MATMATI M, JACQUES P, MAELFAIT J, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet,2011,43(9): 908–912. doi: 10.1038/ng.874
|
[16] |
VANDE WALLE L, Van OPDENBOSCH N, JACQUES P, et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature,2014,512(7512): 69–73. doi: 10.1038/nature13322
|
[17] |
LAM I K Y, CHOW J X, LAU C S, et al. MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett,2018,431: 201–212. doi: 10.1016/j.canlet.2018.05.044
|
[18] |
LI X F, SHEN W W, SUN Y Y, et al. MicroRNA-20a negatively regulates expression of NLRP3-inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint Bone Spine,2016,83(6): 695–700. doi: 10.1016/j.jbspin.2015.10.007
|
[19] |
HUANG Y, LU D, MA W, et al. miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Mol Immunol,2022,143: 68–76. doi: 10.1016/j.molimm.2022.01.002
|
[20] |
LI Y, ZHENG J Y, LIU J Q, et al. Succinate/NLRP3 inflammasome induces synovial fibroblast activation: therapeutical effects of clematichinenoside AR on arthritis. Front Immunol,2016,7: 532. doi: 10.3389/fimmu.2016.00532
|
[21] |
HONG Z, ZHANG X, ZHANG T, et al. The ROS/GRK2/HIF-1alpha/NLRP3 pathway mediates pyroptosis of fibroblast-like synoviocytes and the regulation of monomer derivatives of paeoniflorin. Oxid Med Cell Longev,2022,2022: 4566851. doi: 10.1155/2022/4566851
|
[22] |
HAN X, LIN D, HUANG W, et al. Mechanism of NLRP3 inflammasome intervention for synovitis in knee osteoarthritis: a review of TCM intervention. Front Genet,2023,14: 1159167. doi: 10.3389/fgene.2023.1159167
|
[23] |
WOJDASIEWICZ P, PONIATOWSKI L A, SZUKIEWICZ D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm,2014,2014: 561459. doi: 10.1155/2014/561459
|
[24] |
DERFUS B A, KURIAN J B, BUTLER J J, et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol,2002,29(3): 570–574.
|
[25] |
PAZAR B, EA H K, NARAYAN S, et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1beta secretion through the NLRP3 inflammasome in vitro. J Immunol,2011,186(4): 2495–2502. doi: 10.4049/jimmunol.1001284
|
[26] |
DENOBLE A E, HUFFMAN K M, STABLER T V, et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A,2011,108(5): 2088–2093. doi: 10.1073/pnas.1012743108
|
[27] |
MARCHETTI C, SWARTZWELTER B, KOENDERS M I, et al. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res Ther,2018,20(1): 169. doi: 10.1186/s13075-018-1664-2
|
[28] |
CHENG F, YAN F F, LIU Y P, et al. Dexmedetomidine inhibits the NF-kappaB pathway and NLRP3 inflammasome to attenuate papain-induced osteoarthritis in rats. Pharm Biol,2019,57(1): 649–659. doi: 10.1080/13880209.2019.1651874
|
[29] |
STAROBOVA H, NADAR E I, VETTER I. The NLRP3 Inflammasome: Role and Therapeutic Potential in Pain Treatment. Front Physiol,2020,11: 1016. doi: 10.3389/fphys.2020.01016
|
[30] |
SHAO M, LV D, ZHOU K, et al. Senkyunolide A inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway. Pharm Biol,2022,60(1): 535–542. doi: 10.1080/13880209.2022.2042327
|
[31] |
LI W, WANG Y, TANG Y, et al. Quercetin alleviates osteoarthritis progression in rats by suppressing inflammation and apoptosis via inhibition of IRAK1/NLRP3 signaling. J Inflamm Res,2021,14: 3393–3403. doi: 10.2147/JIR.S311924
|
[32] |
HE M, LU B, OPOKU M, et al. Metformin prevents or delays the development and progression of osteoarthritis: new insight and mechanism of action. Cells,2022,11(19): 3012. doi: 10.3390/cells11193012
|
[33] |
LORDEN G, SANJUAN-GARCIA I, De PABLO N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med,2017,214(2): 511–528. doi: 10.1084/jem.20161452
|
[34] |
HOFMANN S R, KUBASCH A S, IOANNIDIS C, et al. Altered expression of IL-10 family cytokines in monocytes from CRMO patients result in enhanced IL-1beta expression and release. Clin Immunol,2015,161(2): 300–307. doi: 10.1016/j.clim.2015.09.013
|
[35] |
BRANDT D, SOHR E, PABLIK J, et al. CD14(+) monocytes contribute to inflammation in chronic nonbacterial osteomyelitis (CNO) through increased NLRP3 inflammasome expression. Clin Immunol,2018,196: 77–84. doi: 10.1016/j.clim.2018.04.011
|
[36] |
SCIANARO R, INSALACO A, BRACCI LAUDIERO L, et al. Deregulation of the IL-1beta axis in chronic recurrent multifocal osteomyelitis. Pediatr Rheumatol Online J,2014,12: 30. doi: 10.1186/1546-0096-12-30
|
[37] |
DASARI T K, GEIGER R, KARKI R, et al. The nonreceptor tyrosine kinase SYK drives caspase-8/NLRP3 inflammasome-mediated autoinflammatory osteomyelitis. J Biol Chem,2020,295(11): 3394–3400. doi: 10.1074/jbc.RA119.010623
|
[38] |
XUE F, SHU R, XIE Y. The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodontitis patients: RT-PCR study and immunohistochemistry. Arch Oral Biol,2015,60(6): 948–958. doi: 10.1016/j.archoralbio.2015.03.005
|
[39] |
SURLIN P, LAZAR L, SINCAR C, et al. NLRP3 inflammasome expression in gingival crevicular fluid of patients with periodontitis and chronic hepatitis C. Mediators Inflamm,2021,2021: 6917919. doi: 10.1155/2021/6917919
|
[40] |
ISOLA G, POLIZZI A, SANTONOCITO S, et al. Periodontitis activates the NLRP3 inflammasome in serum and saliva. J Periodontol,2022,93(1): 135–145. doi: 10.1002/JPER.21-0049
|
[41] |
HIENZ S A, PALIWAL S, IVANOVSKI S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res,2015,2015: 615486. doi: 10.1155/2015/615486
|
[42] |
MURAKAMI T, TAKAHATA Y, HATA K, et al. Role of interleukin-1 and inflammasomes in oral disease. J Oral Biosci,2020,62(3): 242–248. doi: 10.1016/j.job.2020.07.003
|
[43] |
MONTENEGRO RAUDALES J L, YOSHIMURA A, SM Z, et al. Dental calculus stimulates interleukin-1beta secretion by activating NLRP3 Inflammasome in human and mouse phagocytes. PLoS One,2016,11(9): e0162865. doi: 10.1371/journal.pone.0162865
|
[44] |
YAMAGUCHI Y, KURITA-OCHIAI T, KOBAYASHI R, et al. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm Res,2017,66(1): 59–65. doi: 10.1007/s00011-016-0992-4
|
[45] |
LIAN D, DAI L, XIE Z, et al. Periodontal ligament fibroblasts migration injury via ROS/TXNIP/Nlrp3 inflammasome pathway with Porphyromonas gingivalis lipopolysaccharide. Mol Immunol,2018,103: 209–219. doi: 10.1016/j.molimm.2018.10.001
|
[46] |
ZHAO P, LIU J, PAN C, et al. NLRP3 inflammasome is required for apoptosis of Aggregatibacter actinomycetemcomitans-infected human osteoblastic MG63 cells. Acta Histochem,2014,116(7): 1119–1124. doi: 10.1016/j.acthis.2014.05.008
|
[47] |
KELK P, MOGHBEL N S, HIRSCHFELD J, et al. Aggregatibacter actinomycetemcomitans leukotoxin activates the NLRP3 inflammasome and cell-to-cell communication. Pathogens,2022,11(2): 159. doi: 10.3390/pathogens11020159
|
[48] |
CHEN Y, YANG Q, LV C, et al. NLRP3 regulates alveolar bone loss in ligature-induced periodontitis by promoting osteoclastic differentiation. Cell Prolif,2021,54(2): e12973. doi: 10.1111/cpr.12973
|
[49] |
KAWAHARA Y, KANEKO T, YOSHINAGA Y, et al. Effects of sulfonylureas on periodontopathic bacteria-induced inflammation. J Dent Res,2020,99(7): 830–838. doi: 10.1177/0022034520913250
|
[50] |
CHAUHAN D, VANDE WALLE L, LAMKANFI M. Therapeutic modulation of inflammasome pathways. Immunol Rev,2020,297(1): 123–138. doi: 10.1111/imr.12908
|