欢迎来到《四川大学学报(医学版)》

线粒体钙摄取蛋白1表达下降导致脓毒症小鼠骨骼肌功能障碍

李学欣 吴松林 关发升 刘力

李学欣, 吴松林, 关发升, 等. 线粒体钙摄取蛋白1表达下降导致脓毒症小鼠骨骼肌功能障碍[J]. 四川大学学报(医学版), 2023, 54(3): 552-557. doi: 10.12182/20230560102
引用本文: 李学欣, 吴松林, 关发升, 等. 线粒体钙摄取蛋白1表达下降导致脓毒症小鼠骨骼肌功能障碍[J]. 四川大学学报(医学版), 2023, 54(3): 552-557. doi: 10.12182/20230560102
LI Xue-xin, WU Song-lin, GUAN Fa-sheng, et al. Decreased Expression of Mitochondrial Calcium Uptake Protein 1 Leads to Skeletal Muscle Dysfunction in Septic Mice[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 552-557. doi: 10.12182/20230560102
Citation: LI Xue-xin, WU Song-lin, GUAN Fa-sheng, et al. Decreased Expression of Mitochondrial Calcium Uptake Protein 1 Leads to Skeletal Muscle Dysfunction in Septic Mice[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 552-557. doi: 10.12182/20230560102

线粒体钙摄取蛋白1表达下降导致脓毒症小鼠骨骼肌功能障碍

doi: 10.12182/20230560102
基金项目: 国家自然科学基金面上项目(No. 81772128)、四川省科技计划联合创新重点项目(No. 2022YFS0632)资助
详细信息
    通讯作者:

    E-mail:niuniudoctor@swmu.edu.cn

Decreased Expression of Mitochondrial Calcium Uptake Protein 1 Leads to Skeletal Muscle Dysfunction in Septic Mice

More Information
  • 摘要:   目的  观察脓毒症对骨骼肌功能的影响,并探讨骨骼肌线粒体钙摄取蛋白1(mitochondrial calcium uptake protein 1, MICU1)的作用。   方法  选择SPF级健康雄性C57/BL 6J小鼠40只,随机分为4组:假手术组(Sham组,n=8);脓毒症建模6 h组(CLP-6 h组,n=10);脓毒症建模12 h组(CLP-12 h组,n=10);脓毒症建模24 h组(CLP-24 h组,n=12)。采用盲肠结扎穿孔术(cecal ligation and puncture, CLP)构建脓毒症模型,Sham组小鼠仅行开腹盲肠探查。另选取SPF级小鼠20只,一侧胫前肌空转染腺相关病毒(AAV)作为对照(AAV-C),另一侧胫前肌转染AAV提高MICU1表达(AAV-M)。小鼠随机分为2组:假手术组(AAV-C-Sham,AAV-M-Sham;n=8)和脓毒症建模24 h组(AAV-C-CLP,AAV-M-CLP;n=12)。于相应时间点检测小鼠抓力以及复合肌动作电位(compound muscle action potential, CMAP)。采用ELISA测定骨骼肌炎症因子肿瘤坏死因子α(tumor necrosis factor α, TNF-α)及白细胞介素6(interleukin 6, IL-6)表达水平。通过HE染色检测骨骼肌细胞形态变化,运用Western blot检测MICU1以及肌肉萎缩相关蛋白:肌肉环状指蛋白1(muscle RING-finger containing protein 1, MuRF1)和肌肉萎缩盒F蛋白(muscle atrophy Fbox protein, MAFbx)表达水平,RT-qPCR检测骨骼肌MICU1 mRNA表达水平。  结果  与Sham组相比,CLP组小鼠体质量下降(P<0.05),且随着CLP建模时间延长,小鼠抓力下降(P<0.05);CMAP幅值下降,持续时间和潜伏期延长(P<0.05);骨骼肌炎症因子TNF-α、IL-6表达水平逐渐增高(P<0.05);骨骼肌肌纤维直径及横截面积随建模时间延长逐渐下降(P<0.05);MuRF1、MAFbx蛋白表达水平逐渐增高(P<0.05);MICU1蛋白及mRNA表达水平逐渐下降(P<0.05)。AAV-M-Sham组与AAV-C-Sham组相比,各项指标差异均无统计学意义(P>0.05)。AAV-M-CLP组与AAV-C-CLP组比较,小鼠抓力增高(P<0.05);CMAP幅值增高,持续时间和潜伏期缩短(P<0.05);肌纤维直径及横截面积增加(P<0.05);MuRF1、MAFbx蛋白表达水平降低(P<0.05)。   结论  脓毒症导致骨骼肌功能障碍,与线粒体MICU1表达水平下降有关。
  • 图  1  各组小鼠抓力(A),CMAP检测结果(B),胫前肌炎症因子表达(C),HE染色(×40)、肌纤维直径及横截面积定量分析结果(D),萎缩相关蛋白(E)及MICU1蛋白表达和mRNA的表达(F)

    Figure  1.  Grip strength (A), CMAP (B), IL-6 and TNF-α (C), muscle fiber diameter and CSA quantification after H&E staining (×40) (D), expression of MuRF1 and MAFbx proteins (E), and MICU1 protein and mRNA (F)

    CMAP: compound muscle action potential; IL-6: interleukin 6; CSA: cross-sectional area; MuRF1: muscle RING-finger containing protein 1; MAFbx: muscle atrophy Fbox protein; MICU1: mitochondrial calcium uptake protein 1. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001, vs. Sham group; # P<0.05, ## P<0.01, ### P<0.001, ####P<0.0001, vs. CLP-6 h group; P<0.05, ▲▲ P<0.01, ▲▲▲ P<0.001, vs. CLP-12 h group.

    图  2  AAV干预后,各组小鼠抓力(A)、CMAP检测结果(B)、小鼠胫前肌HE染色(×40)、肌纤维直径及横截面积定量分析结果(C)、MICU1蛋白和mRNA表达(D)和胫前肌萎缩相关蛋白表达(E)

    Figure  2.  The grip strength (A), CMAP (B), tibialis anterior muscle fiber diameter and CSA quantification after HE staining (×40) (C), the expression of MICU1 protein (D) and mRNA MuRF1 and MAFbx proteins (E) after AAV intervention

    AAV: adeno-associated virus; the other abbreviations are explained in the notes to Fig 1. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001, vs. AAV-C-Sham group; ## P<0.01, #### P<0.0001, vs. AAV-M-Sham group; P<0.05, ▲▲ P<0.01, ▲▲▲▲ P<0.0001, vs. AAV-C-CLP group.

  • [1] HABERECHT-MÜLLER S, KRÜGER E, FIELITZ J. Out of control: the role of the ubiquitin proteasome system in skeletal muscle during inflammation. Biomolecules,2021,11(9): 1327. doi: 10.3390/biom11091327
    [2] VANKRUNKELSVEN W, DERDE S, GUNST J, et al. Obesity attenuates inflammation, protein catabolism, dyslipidaemia, and muscle weakness during sepsis, independent of leptin. J Cachexia Sarcopenia Muscle,2022,13(1): 418–433. doi: 10.1002/jcsm.12904
    [3] WITTEVEEN E, WIESKE L, MANDERS E, et al . Muscle weakness in a S. pneumoniae sepsis mouse model. Ann Transl Med,2019,7(1): 9. doi: 10.21037/atm.2018.12.45
    [4] SCHEFOLD J C, WOLLERSHEIM T, GRUNOW J J, et al. Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle,2020,11(6): 1399–1412. doi: 10.1002/jcsm.12620
    [5] VECELLIO REANE D, CERQUA C, SACCONI S, et al. The splicing of the mitochondrial calcium uniporter genuine activator MICU1 is driven by RBFOX2 splicing factor during myogenic differentiation. Int J Mol Sci,2022,23(5): 2517. doi: 10.3390/ijms23052517
    [6] ALEVRIADOU B R, PATEL A, NOBLE M, et al. Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol,2021,320(4): C465–C482. doi: 10.1152/ajpcell.00502.2020
    [7] TSAI C W, RODRIGUEZ M X, Van KEUREN A M, et al. Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Mol Cell,2022,82(19): 3661–3676.e8. doi: 10.1016/j.molcel.2022.09.006
    [8] DRECHSLER S, OSUCHOWSKI M. Cecal ligation and puncture. Sepsis: 2321. New York, NY: Springer US, 2021: 1−8.
    [9] ALVERDY J C, KESKEY R, THEWISSEN R. Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis? Infect Immun, 2020, 88(9): e00942−19. doi: 10.1128/IAI.00942-19.
    [10] FUJINAMI Y, INOUE S, ONO Y, et al. Sepsis induces physical and mental impairments in a mouse model of post-intensive care syndrome. J Clin Med,2021,10(8): 1593. doi: 10.3390/jcm10081593
    [11] POLLARI E, PRIOR R, ROBBERECHT W, et al. In Vivo electrophysiological measurement of compound muscle action potential from the forelimbs in mouse models of motor neuron degeneration. J Vis Exp,2018(136): 57741. doi: 10.3791/57741
    [12] WANG J, WANG Y, XIE J, et al. Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis. Blood,2021,138(9): 806–810. doi: 10.1182/blood.2020009417
    [13] FANG W, TSENG Y, LEE T, et al. Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol,2021,178(15): 2998–3016. doi: 10.1111/bph.15472
    [14] LEDUC-GAUDET J P, MAYAKI D, REYNAUD O, et al. Parkin overexpression attenuates sepsis-induced muscle wasting. Cells,2020,9(6): 1454. doi: 10.3390/cells9061454
    [15] CAO Y, WANG Z, YU T, et al. Sepsis induces muscle atrophy by inhibiting proliferation and promoting apoptosis via PLK1-AKT signalling. J Cell Mol Med,2021,25(20): 9724–9739. doi: 10.1111/jcmm.16921
    [16] ZANDERS L, KNY M, HAHN A, et al. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J Cachexia Sarcopenia Muscle,2022,13(1): 713–727. doi: 10.1002/jcsm.12867
    [17] WU W, ZHENG J, JIA Z. Structural characterization of the mitochondrial Ca2+ uniporter provides insights into Ca2+ uptake and regulation. iScience,2021,24(8): 102895. doi: 10.1016/j.isci.2021.102895
    [18] FAN M, ZHANG J, TSAI C W, et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature,2020,582(7810): 129–133. doi: 10.1038/s41586-020-2309-6
    [19] ALI M, ZHANG X, LACANNA R, et al. MICU1-dependent mitochondrial calcium uptake regulates lung alveolar type 2 cell plasticity and lung regeneration. JCI Insight,2022,7(4): e154447. doi: 10.1172/jci.insight.154447
    [20] DEBATTISTI V, HORN A, SINGH R, et al. Dysregulation of mitochondrial Ca2+ uptake and sarcolemma repair underlie muscle weakness and wasting in patients and mice lacking MICU1. Cell Rep,2019,29(5): 1274–1286.e6. doi: 10.1016/j.celrep.2019.09.063
    [21] SINGH R, BARTOK A, PAILLARD M, et al. Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients. Sci Adv,2022,8(11): eabj4716. doi: 10.1126/sciadv.abj4716
    [22] GHOSH S, ZULKIFLI M, JOSHI A, et al. MCU-complex-mediated mitochondrial calcium signaling is impaired in Barth syndrome. Hum Mol Genet,2022,31(3): 376–385. doi: 10.1093/hmg/ddab254
  • 加载中
图(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-12-26
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回