欢迎来到《四川大学学报(医学版)》

重性精神疾病中海马发育偏倚及其与认知的关系

乔春霞 魏巍 邓丽红 陶诗婉 李涛

乔春霞, 魏巍, 邓丽红, 等. 重性精神疾病中海马发育偏倚及其与认知的关系[J]. 四川大学学报(医学版), 2023, 54(2): 268-274. doi: 10.12182/20230360109
引用本文: 乔春霞, 魏巍, 邓丽红, 等. 重性精神疾病中海马发育偏倚及其与认知的关系[J]. 四川大学学报(医学版), 2023, 54(2): 268-274. doi: 10.12182/20230360109
QIAO Chun-xia, WEI Wei, DENG Li-hong, et al. Hippocampal Development Deviation and Its Relationship With Cognition in Major Psychiatric Disorders[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(2): 268-274. doi: 10.12182/20230360109
Citation: QIAO Chun-xia, WEI Wei, DENG Li-hong, et al. Hippocampal Development Deviation and Its Relationship With Cognition in Major Psychiatric Disorders[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(2): 268-274. doi: 10.12182/20230360109

栏目: 论 著

重性精神疾病中海马发育偏倚及其与认知的关系

doi: 10.12182/20230360109
基金项目: 国家自然科学基金(No. 81920108018)资助
详细信息
    通讯作者:

    E-mail:litaozjusc@zju.edu.cn

Hippocampal Development Deviation and Its Relationship With Cognition in Major Psychiatric Disorders

More Information
  • 摘要:   目的  研究重性精神疾病(精神分裂症、双相障碍和重性抑郁障碍)海马发育偏倚及其与认知功能的关系。  方法  采集174例首发未用药精神分裂症患者,169例双相障碍患者,184例未用药重性抑郁障碍患者和321例健康受试的结构磁共振成像数据,经Freesurfer预处理后得到海马体积。使用大脑发育常模计算海马发育偏倚分数。采集视觉记忆、注意力、空间工作记忆等认知功能数据。性别分层比较海马发育偏倚分数在对照组和疾病组之间的差异,探索年龄对海马发育偏倚分数的调节效应,计算海马发育偏倚分数与认知功能的相关性。  结果  重性精神疾病患者海马发育偏倚分数均低于健康对照(FDR-P<0.05)。调节效应分析显示低年龄组〔<(25.83~28.56)岁〕患者海马发育偏倚分数低于正常对照,高年龄组〔>(35.87~54.35)岁〕患者海马发育偏倚分数高于正常对照。男性精神分裂症患者的右侧海马发育偏倚分数与空间工作记忆错误数量成正相关(r=0.32,FDR-P=0.04)。  结论  本研究结果提示重性精神疾病患者中海马发育存在异常,且不同年龄海马发育异常存在差异。基于大脑发育常模的海马发育偏倚分数可以为进一步了解重性精神疾病提供新的视角。
  • 图  1  海马发育偏倚分数在不同组间的分布及比较

    Figure  1.  The distribution and comparison of hippocampal deviation scores between groups

    The X-axis represents the corrected hippocampal development deviation score. Colors represent Cohen's d effect size for deviation scores between groups. P values are false discovery rate (FDR)-corrected. The abbreviations are explained in the note to Table 1. * P<0.05, ** P<0.01, *** P<0.001, vs. HCs.

    图  2  年龄对海马发育偏倚分数的调节作用

    Figure  2.  Moderating effect of age on the hippocampal development deviation scores

    The green region represents the significance of moderating effect lower than 0.05. The red region indicates an insignificant moderating effect. The abbreviations are explained in the note to Table 1.

    图  3  疾病组中海马发育偏倚分数与认知功能的关系

    Figure  3.  Association between hippocampal development deviation scores and cognitive scores in the disease groups

    The abbreviations are explained in the note to Table 1. * FDR-P<0.05.

    表  1  一般人口学资料、认知功能及临床特征

    Table  1.   General demographic, cognitive, and clinical data

    ItemHCs (n=178)FES (n=174)BD (n=169)MDD (n=184)χ2/FP
    Demographic information
     (Female/male)/case 105/73 96/78 93/76 115/69 2.78 0.43
     Age/yr. 24.20±9.26* 20.02± 6.98 25.55±9.19* 27.16±9.15* 21.80 <0.001
     Education years/year 13.93±4.42* 11.11±2.89 13.51±3.01* 13.60±3.58* 25.35 <0.001
     Onset age/yr. 18.91±6.85
     Duration of illness/d 55.73±65.79 32.97±46.96
    Cognitive evaluation
     DMS-PC 90.12±7.49* 77.71±14.03 86.28±9.18*, # 85.00±11.04*, # 37.55 <0.001
     IED-SC 8.43±1.31* 7.71±1.83 7.96±1.64# 8.33±2.66 4.72 <0.01
     RVP-TCR 250.24±24.01* 236.31±24.18 244.35±23.06* 246.43±23.08* 10.05 <0.001
     RVP-ML 406.35±94.41* 484.58±156.38 434.29±118.13* 427.97±115.40* 11.42 <0.001
     SWM-BE 20.84±20.48* 39.08±25.14 25.41±19.94* 25.35±18.55* 22.22 <0.001
     SWM-WE 2.65±6.16 3.45±5.42 2.26±3.51 1.93±3.01* 3.04 0.03
    Clinical evaluation
     HAMD TS 10.13±7.15 20.77±5.38
     YMRS TS 7.17±8.68
     PANSS TS 83.97±21.96
     PANSS PS 22.01±6.40
     PANSS NS 21.91±8.39
     PANSS GPS 40.06±11.51
     FES: first-episode drug-naïve schizophrenia; BD: bipolar disorder; MDD: major depressive disorder; HCs: healthy controls; DMS-PC: delay matching-to-sample percentage correction; IED-SC: intra/extradimensional set shift stage completed; RVP-TCR: rapid visual information processing total correct rejections; RVP-ML: rapid visual information processing mean latency; SWM-BE: spatial working memory between search errors; SWM-WE: spatial working memory within errors; HAMD: Hamilton rating scale for depression; YMRS: Young mania rating scale; PANSS: positive and negative syndrome scale; TS: total score; PS: positive scale; NS: negative scale; GPS: general psychopathology scale. -: unmeasured value. * P<0.05, vs. FES; # P<0.05, vs. HCs.
    下载: 导出CSV

    表  2  海马原始体积组间比较

    Table  2.   Comparison of hippocampal volume between groups

    Hippocampal
    volume
    Female Male
    HCs (n=178)FES (n=174)BD (n=169)MDD (n=184)HCs (n=178)FES (n=174)BD (n=169)MDD (n=184)
    Left 4049.02±324.37 3910.42±293.29* 3985.57±339.00 3983.99±320.98 4315.21±391.42 4275.51±347.52 4267.69±396.93 4376.88±332.80
    Right 4252.89±319.98 4113.06±353.55 4216.64±368.90 4190.97±341.60 4515.21±403.81 4548.47±362.95 4516.65±460.38 4619.37±362.84
     The abbreviations are explained in the note to Table 1. * P<0.05, vs. HCs.
    下载: 导出CSV
  • [1] ANAND K S, DHIKAV V. Hippocampus in health and disease: an overview. Ann Indian Acad Neurol,2012,15(4): 239–246. doi: 10.4103/0972-2327.104323
    [2] GOMES F V, ZHU X, GRACE A A. Stress during critical periods of development and risk for schizophrenia. Schizophr Res,2019,2013: 107–113. doi: 10.1016/j.schres.2019.01.030
    [3] DU PLESSIS S, SCHEFFLER F, LUCKHOFF H, et al. Childhood trauma and hippocampal subfield volumes in first-episode schizophrenia and healthy controls. Schizophr Res,2020,215: 308–313. doi: 10.1016/j.schres.2019.10.009
    [4] TANTI A, WESTPHAL W P, GIRAULT V, et al. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus,2013,23(9): 797–811. doi: 10.1002/hipo.22134
    [5] MARTÍNEZ A L, BREA J, RICO S, et al. Cognitive deficit in schizophrenia: from etiology to novel treatments. Int J Mol Sci,2021,22(18): 9905. doi: 10.3390/ijms22189905
    [6] XU N, HUGGON B, SAUNDERS K E A. Cognitive impairment in patients with bipolar disorder: impact of pharmacological treatment. CNS Drugs,2020,34(1): 29–46. doi: 10.1007/s40263-019-00688-2
    [7] ROCK P L, ROISER J P, RIEDEL W J, et al. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med,2014,44(10): 2029–2040. doi: 10.1017/S0033291713002535
    [8] Van ERP T G, HIBAR D P, RASMUSSEN J M, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry,2016,21(4): 547–553. doi: 10.1038/mp.2015.63
    [9] HIBAR D P, WESTLYE L T, Van ERP T G, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry,2016,21(12): 1710–1716. doi: 10.1038/mp.2015.227
    [10] SCHMAAL L, VELTMAN D J, Van ERP T G, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry,2016,21(6): 806–812. doi: 10.1038/mp.2015.69
    [11] KHALIL M, HOLLANDER P, RAUCHER-CHENE D, et al. Structural brain correlates of cognitive function in schizophrenia: a meta-analysis. Neurosci Biobehav Rev,2022,132: 37–49. doi: 10.1016/j.neubiorev.2021.11.034
    [12] SHI J, GUO H, LIU S, et al. Subcortical brain volumes relate to neurocognition in first-episode schizophrenia, bipolar disorder, major depression disorder, and healthy controls. Front Psychiatry,2021,12: 747386. doi: 10.3389/fpsyt.2021.747386
    [13] PATEL V, DAN C, PARIKH R, et al. Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition. Lancet,2016,387(10028): 1672–1685. doi: 10.1016/S0140-6736(15)00390-6
    [14] OWEN M J, O'DONOVAN M C, THAPAR A, et al. Neurodevelop-mental hypothesis of schizophrenia. Br J Psychiatry,2011,198(3): 173–175. doi: 10.1192/bjp.bp.110.084384
    [15] RUTHERFORD S, FRAZA C, DINGA R, et al. Charting brain growth and aging at high spatial precision. eLife,2022,11: e72904. doi: 10.7554/eLife.72904
    [16] COLE T J. The development of growth references and growth charts. Ann Hum Biol,2012,39(5): 382–394. doi: 10.3109/03014460.2012.694475
    [17] BETHLEHEM R A I, SEIDLITZ J, WHITE S R, et al. Brain charts for the human lifespan. Nature,2022,604(7906): 525–533. doi: 10.1038/s41586-022-04554-y
    [18] PINAYA W H L, MECHELLI A, SATO J R. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp,2019,40(3): 944–954. doi: 10.1002/hbm.24423
    [19] ZABIHI M, OLDEHINKEL M, WOLFERS T, et al. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biol Psychiatry Cogn Neurosci Neuroimaging,2019,4(6): 567–578. doi: 10.1016/j.bpsc.2018.11.013
    [20] FRAZA C J, DINGA R, BECKMANN C F, et al. Warped Bayesian linear regression for normative modelling of big data. Neuroimage,2021,245: 118715. doi: 10.1016/j.neuroimage.2021.118715
    [21] DIMA D, MODABBERNIA A, PAPACHRISTOU E, et al. Subcortical volumes across the lifespan: data from 18, 605 healthy individuals aged 3-90 years. Hum Brain Mapp,2022,43(1): 452–469. doi: 10.1002/hbm.25320
    [22] ANNETT M. Hand preference observed in large healthy samples: classification, norms and interpretations of increased non-right-handedness by the right shift theory. Br J Psychol,2004,95(Pt 3): 339–353. doi: 10.1348/0007126041528130
    [23] KAY S R, FISZBEIN A, OPLER L A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull,1987,13(2): 261–276. doi: 10.1093/schbul/13.2.261
    [24] HAMILTON M. A rating scale for depression. J Neurol Neurosurg Psychiatry,1960,23(1): 56–62. doi: 10.1136/jnnp.23.1.56
    [25] YOUNG R C, BIGGS J T, ZIEGLER V E, et al. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry,1978,133(5): 429–435. doi: 10.1192/bjp.133.5.429
    [26] SEGONNE F, DALE A M, BUSA E, et al. A hybrid approach to the Skull Stripping problem in MRI. Neuroimage,2004,22(3): 1060–1075. doi: 10.1016/j.neuroimage.2004.03.032
    [27] FISCHL B, SALAT D H, BUSA E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron,2002,33(3): 341–355. doi: 10.1016/s0896-6273(02)00569-x
    [28] DINGA R, FRAZA C J, BAYER J M, et al. Normative modeling of neuroimaging data using generalized additive models of location scale and shape. bioRxiv,2021. doi: 10.1101/2021.06.14.448106
    [29] De LANGE A M G, COLE J H. Commentary: correction procedures in brain-age prediction. Neuroimage Clin,2020,26: 102229. doi: 10.1016/j.nicl.2020.102229
    [30] KAUFMANN T, Van Der MEER D, DOAN N T, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci,2019,22(10): 1617–1623. doi: 10.1038/s41593-019-0471-7
    [31] GE R, LIU X, LONG D, et al. Sex effects on cortical morphological networks in healthy young adults. Neuroimage,2021,233: 117945. doi: 10.1016/j.neuroimage.2021.117945
    [32] JOHNSON P O, FAY L C. The Johnson-Neyman technique, its theory and application. Psychometrika,1950,15(4): 349–367. doi: 10.1007/bf02288864
    [33] BAUER D J, CURRAN P J. Probing Interactions in Fixed and Multilevel Regression: Inferential and Graphical Techniques. Multivariate Behav Res,2005,40(3): 373–400. doi: 10.1207/s15327906mbr4003_5
    [34] CONSORTIUM C. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet,2013,45(9): 984–994. doi: 10.1038/ng.2711
    [35] REAY W R, CAIRNS M J. Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations. Transl Psychiatry,2020,10(1): 134. doi: 10.1038/s41398-020-0817-7
    [36] RAO S, MARTINEZ-CENGOTITABENGOA M, YAO Y, et al. Peripheral blood nerve growth factor levels in major psychiatric disorders. J Psychiatr Res,2017,86: 39–45. doi: 10.1016/j.jpsychires.2016.11.012
    [37] LI C T, YANG K C, LIN W C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry,2019,9: 767. doi: 10.3389/fpsyt.2018.00767
    [38] COLE J H, MARIONI R E, HARRIS S E, et al. Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol Psychiatry,2019,24(2): 266–281. doi: 10.1038/s41380-018-0098-1
    [39] TØNNESEN S, KAUFMANN T, De LANGE A M G, et al. Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: a multisample diffusion tensor imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging,2020,5(12): 1095–1103. doi: 10.1016/j.bpsc.2020.06.014
    [40] BALLESTER P L, ROMANO M T, De AZEVEDO CARDOSO T, et al. Brain age in mood and psychotic disorders: a systematic review and meta-analysis. Acta Psychiatr Scand,2022,145(1): 42–55. doi: 10.1111/acps.13371
    [41] ZHANG S, HU J, LIU G, et al. Chronic clomipramine treatment increases hippocampal volume in rats exposed to chronic unpredictable mild stress. Transl Psychiatry,2022,12(1): 1–9. doi: 10.1038/s41398-022-02006-9
    [42] STERN Y, ARENAZA-URQUIJO E M, BARTRÉS-FAZ D, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement,2020,16(9): 1305–1311. doi: 10.1016/j.jalz.2018.07.219
    [43] DEJONG N R, JANSEN J F A, Van BOXTEL M P J, et al. Cognitive resilience depends on white matter connectivity: the Maastricht Study. Alzheimers Dement,2022. doi: 10.1002/alz.12758
    [44] ABROUS D N, ADRIANI W, MONTARON M F, et al. Nicotine self-administration impairs hippocampal plasticity. J Neurosci,2002,22(9): 3656–3662. doi: 10.1523/JNEUROSCI.22-09-03656.2002
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2507
  • HTML全文浏览量:  56
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-02-10
  • 网络出版日期:  2023-03-22
  • 刊出日期:  2023-03-20

目录

    /

    返回文章
    返回