Hippocampal Development Deviation and Its Relationship With Cognition in Major Psychiatric Disorders
-
摘要:
目的 研究重性精神疾病(精神分裂症、双相障碍和重性抑郁障碍)海马发育偏倚及其与认知功能的关系。 方法 采集174例首发未用药精神分裂症患者,169例双相障碍患者,184例未用药重性抑郁障碍患者和321例健康受试的结构磁共振成像数据,经Freesurfer预处理后得到海马体积。使用大脑发育常模计算海马发育偏倚分数。采集视觉记忆、注意力、空间工作记忆等认知功能数据。性别分层比较海马发育偏倚分数在对照组和疾病组之间的差异,探索年龄对海马发育偏倚分数的调节效应,计算海马发育偏倚分数与认知功能的相关性。 结果 重性精神疾病患者海马发育偏倚分数均低于健康对照(FDR-P<0.05)。调节效应分析显示低年龄组〔<(25.83~28.56)岁〕患者海马发育偏倚分数低于正常对照,高年龄组〔>(35.87~54.35)岁〕患者海马发育偏倚分数高于正常对照。男性精神分裂症患者的右侧海马发育偏倚分数与空间工作记忆错误数量成正相关(r=0.32,FDR-P=0.04)。 结论 本研究结果提示重性精神疾病患者中海马发育存在异常,且不同年龄海马发育异常存在差异。基于大脑发育常模的海马发育偏倚分数可以为进一步了解重性精神疾病提供新的视角。 Abstract:Objective To investigate hippocampal development deviation and its association with cognition in patients with major psychiatric disorders (MPDs), including schizophrenia, bipolar disorder and major depressive disorder. Methods The T1-weighted MRI data of 174 first-episode drug-naïve schizophrenia (FES) atients, 169 bipolar disorder (BD) patients, 184 major depressive disorder (MDD) patients, and 321 healthy controls were collected and their hippocampal volume was extracted after preprocessing with Freesurfer 5.3. A normative neurodevelopment model was applied to calculate the hippocampal deviation scores. Data on cognitive functions, including visual memory, attention, spatial working memory, were collected. Comparison by different sexes was made to identify difference between the hippocampal development deviation scores of the control group and those of the disease groups. We also investigated the moderating effect of age on the deviation score and explored the association between the deviation score and cognitive function. Results The hippocampal development deviation scores of patients with MPDs were significantly lower than those of the healthy controls (false discovery rate [FDR]-P<0.05). Analysis of the moderating effect of age revealed lower deviation scores in young patients (<[25.83-28.56] yr.) and higher deviation scores in old patients (>[35.87-54.35] yr.) in comparison with those of the healthy controls. The right hippocampal deviation scores in male FES patients were positively correlated with the number of errors for tasks concerning spatial working memory (r=0.32, FDR-P=0.04). Conclusion Our findings suggest abnormal hippocampal development in MPDs patients and its different distribution in MPDs patients of different age groups. The hippocampal development deviation score may provide a new perspective for further understanding of etiology in MPDs. -
图 1 海马发育偏倚分数在不同组间的分布及比较
Figure 1. The distribution and comparison of hippocampal deviation scores between groups
The X-axis represents the corrected hippocampal development deviation score. Colors represent Cohen's d effect size for deviation scores between groups. P values are false discovery rate (FDR)-corrected. The abbreviations are explained in the note to Table 1. * P<0.05, ** P<0.01, *** P<0.001, vs. HCs.
图 2 年龄对海马发育偏倚分数的调节作用
Figure 2. Moderating effect of age on the hippocampal development deviation scores
The green region represents the significance of moderating effect lower than 0.05. The red region indicates an insignificant moderating effect. The abbreviations are explained in the note to Table 1.
表 1 一般人口学资料、认知功能及临床特征
Table 1. General demographic, cognitive, and clinical data
Item HCs (n=178) FES (n=174) BD (n=169) MDD (n=184) χ2/F P Demographic information (Female/male)/case 105/73 96/78 93/76 115/69 2.78 0.43 Age/yr. 24.20±9.26* 20.02± 6.98 25.55±9.19* 27.16±9.15* 21.80 <0.001 Education years/year 13.93±4.42* 11.11±2.89 13.51±3.01* 13.60±3.58* 25.35 <0.001 Onset age/yr. − 18.91±6.85 − − − − Duration of illness/d − − 55.73±65.79 32.97±46.96 − − Cognitive evaluation DMS-PC 90.12±7.49* 77.71±14.03 86.28±9.18*, # 85.00±11.04*, # 37.55 <0.001 IED-SC 8.43±1.31* 7.71±1.83 7.96±1.64# 8.33±2.66 4.72 <0.01 RVP-TCR 250.24±24.01* 236.31±24.18 244.35±23.06* 246.43±23.08* 10.05 <0.001 RVP-ML 406.35±94.41* 484.58±156.38 434.29±118.13* 427.97±115.40* 11.42 <0.001 SWM-BE 20.84±20.48* 39.08±25.14 25.41±19.94* 25.35±18.55* 22.22 <0.001 SWM-WE 2.65±6.16 3.45±5.42 2.26±3.51 1.93±3.01* 3.04 0.03 Clinical evaluation HAMD TS − − 10.13±7.15 20.77±5.38 − − YMRS TS − − 7.17±8.68 − − − PANSS TS − 83.97±21.96 − − − − PANSS PS − 22.01±6.40 − − − − PANSS NS − 21.91±8.39 − − − − PANSS GPS − 40.06±11.51 − − − − FES: first-episode drug-naïve schizophrenia; BD: bipolar disorder; MDD: major depressive disorder; HCs: healthy controls; DMS-PC: delay matching-to-sample percentage correction; IED-SC: intra/extradimensional set shift stage completed; RVP-TCR: rapid visual information processing total correct rejections; RVP-ML: rapid visual information processing mean latency; SWM-BE: spatial working memory between search errors; SWM-WE: spatial working memory within errors; HAMD: Hamilton rating scale for depression; YMRS: Young mania rating scale; PANSS: positive and negative syndrome scale; TS: total score; PS: positive scale; NS: negative scale; GPS: general psychopathology scale. -: unmeasured value. * P<0.05, vs. FES; # P<0.05, vs. HCs. 表 2 海马原始体积组间比较
Table 2. Comparison of hippocampal volume between groups
Hippocampal
volumeFemale Male HCs (n=178) FES (n=174) BD (n=169) MDD (n=184) HCs (n=178) FES (n=174) BD (n=169) MDD (n=184) Left 4049.02±324.37 3910.42±293.29* 3985.57±339.00 3983.99±320.98 4315.21±391.42 4275.51±347.52 4267.69±396.93 4376.88±332.80 Right 4252.89±319.98 4113.06±353.55 4216.64±368.90 4190.97±341.60 4515.21±403.81 4548.47±362.95 4516.65±460.38 4619.37±362.84 The abbreviations are explained in the note to Table 1. * P<0.05, vs. HCs. -
[1] ANAND K S, DHIKAV V. Hippocampus in health and disease: an overview. Ann Indian Acad Neurol,2012,15(4): 239–246. doi: 10.4103/0972-2327.104323 [2] GOMES F V, ZHU X, GRACE A A. Stress during critical periods of development and risk for schizophrenia. Schizophr Res,2019,2013: 107–113. doi: 10.1016/j.schres.2019.01.030 [3] DU PLESSIS S, SCHEFFLER F, LUCKHOFF H, et al. Childhood trauma and hippocampal subfield volumes in first-episode schizophrenia and healthy controls. Schizophr Res,2020,215: 308–313. doi: 10.1016/j.schres.2019.10.009 [4] TANTI A, WESTPHAL W P, GIRAULT V, et al. Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus,2013,23(9): 797–811. doi: 10.1002/hipo.22134 [5] MARTÍNEZ A L, BREA J, RICO S, et al. Cognitive deficit in schizophrenia: from etiology to novel treatments. Int J Mol Sci,2021,22(18): 9905. doi: 10.3390/ijms22189905 [6] XU N, HUGGON B, SAUNDERS K E A. Cognitive impairment in patients with bipolar disorder: impact of pharmacological treatment. CNS Drugs,2020,34(1): 29–46. doi: 10.1007/s40263-019-00688-2 [7] ROCK P L, ROISER J P, RIEDEL W J, et al. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med,2014,44(10): 2029–2040. doi: 10.1017/S0033291713002535 [8] Van ERP T G, HIBAR D P, RASMUSSEN J M, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry,2016,21(4): 547–553. doi: 10.1038/mp.2015.63 [9] HIBAR D P, WESTLYE L T, Van ERP T G, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry,2016,21(12): 1710–1716. doi: 10.1038/mp.2015.227 [10] SCHMAAL L, VELTMAN D J, Van ERP T G, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry,2016,21(6): 806–812. doi: 10.1038/mp.2015.69 [11] KHALIL M, HOLLANDER P, RAUCHER-CHENE D, et al. Structural brain correlates of cognitive function in schizophrenia: a meta-analysis. Neurosci Biobehav Rev,2022,132: 37–49. doi: 10.1016/j.neubiorev.2021.11.034 [12] SHI J, GUO H, LIU S, et al. Subcortical brain volumes relate to neurocognition in first-episode schizophrenia, bipolar disorder, major depression disorder, and healthy controls. Front Psychiatry,2021,12: 747386. doi: 10.3389/fpsyt.2021.747386 [13] PATEL V, DAN C, PARIKH R, et al. Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition. Lancet,2016,387(10028): 1672–1685. doi: 10.1016/S0140-6736(15)00390-6 [14] OWEN M J, O'DONOVAN M C, THAPAR A, et al. Neurodevelop-mental hypothesis of schizophrenia. Br J Psychiatry,2011,198(3): 173–175. doi: 10.1192/bjp.bp.110.084384 [15] RUTHERFORD S, FRAZA C, DINGA R, et al. Charting brain growth and aging at high spatial precision. eLife,2022,11: e72904. doi: 10.7554/eLife.72904 [16] COLE T J. The development of growth references and growth charts. Ann Hum Biol,2012,39(5): 382–394. doi: 10.3109/03014460.2012.694475 [17] BETHLEHEM R A I, SEIDLITZ J, WHITE S R, et al. Brain charts for the human lifespan. Nature,2022,604(7906): 525–533. doi: 10.1038/s41586-022-04554-y [18] PINAYA W H L, MECHELLI A, SATO J R. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp,2019,40(3): 944–954. doi: 10.1002/hbm.24423 [19] ZABIHI M, OLDEHINKEL M, WOLFERS T, et al. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biol Psychiatry Cogn Neurosci Neuroimaging,2019,4(6): 567–578. doi: 10.1016/j.bpsc.2018.11.013 [20] FRAZA C J, DINGA R, BECKMANN C F, et al. Warped Bayesian linear regression for normative modelling of big data. Neuroimage,2021,245: 118715. doi: 10.1016/j.neuroimage.2021.118715 [21] DIMA D, MODABBERNIA A, PAPACHRISTOU E, et al. Subcortical volumes across the lifespan: data from 18, 605 healthy individuals aged 3-90 years. Hum Brain Mapp,2022,43(1): 452–469. doi: 10.1002/hbm.25320 [22] ANNETT M. Hand preference observed in large healthy samples: classification, norms and interpretations of increased non-right-handedness by the right shift theory. Br J Psychol,2004,95(Pt 3): 339–353. doi: 10.1348/0007126041528130 [23] KAY S R, FISZBEIN A, OPLER L A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull,1987,13(2): 261–276. doi: 10.1093/schbul/13.2.261 [24] HAMILTON M. A rating scale for depression. J Neurol Neurosurg Psychiatry,1960,23(1): 56–62. doi: 10.1136/jnnp.23.1.56 [25] YOUNG R C, BIGGS J T, ZIEGLER V E, et al. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry,1978,133(5): 429–435. doi: 10.1192/bjp.133.5.429 [26] SEGONNE F, DALE A M, BUSA E, et al. A hybrid approach to the Skull Stripping problem in MRI. Neuroimage,2004,22(3): 1060–1075. doi: 10.1016/j.neuroimage.2004.03.032 [27] FISCHL B, SALAT D H, BUSA E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron,2002,33(3): 341–355. doi: 10.1016/s0896-6273(02)00569-x [28] DINGA R, FRAZA C J, BAYER J M, et al. Normative modeling of neuroimaging data using generalized additive models of location scale and shape. bioRxiv,2021. doi: 10.1101/2021.06.14.448106 [29] De LANGE A M G, COLE J H. Commentary: correction procedures in brain-age prediction. Neuroimage Clin,2020,26: 102229. doi: 10.1016/j.nicl.2020.102229 [30] KAUFMANN T, Van Der MEER D, DOAN N T, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci,2019,22(10): 1617–1623. doi: 10.1038/s41593-019-0471-7 [31] GE R, LIU X, LONG D, et al. Sex effects on cortical morphological networks in healthy young adults. Neuroimage,2021,233: 117945. doi: 10.1016/j.neuroimage.2021.117945 [32] JOHNSON P O, FAY L C. The Johnson-Neyman technique, its theory and application. Psychometrika,1950,15(4): 349–367. doi: 10.1007/bf02288864 [33] BAUER D J, CURRAN P J. Probing Interactions in Fixed and Multilevel Regression: Inferential and Graphical Techniques. Multivariate Behav Res,2005,40(3): 373–400. doi: 10.1207/s15327906mbr4003_5 [34] CONSORTIUM C. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet,2013,45(9): 984–994. doi: 10.1038/ng.2711 [35] REAY W R, CAIRNS M J. Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations. Transl Psychiatry,2020,10(1): 134. doi: 10.1038/s41398-020-0817-7 [36] RAO S, MARTINEZ-CENGOTITABENGOA M, YAO Y, et al. Peripheral blood nerve growth factor levels in major psychiatric disorders. J Psychiatr Res,2017,86: 39–45. doi: 10.1016/j.jpsychires.2016.11.012 [37] LI C T, YANG K C, LIN W C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Front Psychiatry,2019,9: 767. doi: 10.3389/fpsyt.2018.00767 [38] COLE J H, MARIONI R E, HARRIS S E, et al. Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol Psychiatry,2019,24(2): 266–281. doi: 10.1038/s41380-018-0098-1 [39] TØNNESEN S, KAUFMANN T, De LANGE A M G, et al. Brain age prediction reveals aberrant brain white matter in schizophrenia and bipolar disorder: a multisample diffusion tensor imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging,2020,5(12): 1095–1103. doi: 10.1016/j.bpsc.2020.06.014 [40] BALLESTER P L, ROMANO M T, De AZEVEDO CARDOSO T, et al. Brain age in mood and psychotic disorders: a systematic review and meta-analysis. Acta Psychiatr Scand,2022,145(1): 42–55. doi: 10.1111/acps.13371 [41] ZHANG S, HU J, LIU G, et al. Chronic clomipramine treatment increases hippocampal volume in rats exposed to chronic unpredictable mild stress. Transl Psychiatry,2022,12(1): 1–9. doi: 10.1038/s41398-022-02006-9 [42] STERN Y, ARENAZA-URQUIJO E M, BARTRÉS-FAZ D, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement,2020,16(9): 1305–1311. doi: 10.1016/j.jalz.2018.07.219 [43] DEJONG N R, JANSEN J F A, Van BOXTEL M P J, et al. Cognitive resilience depends on white matter connectivity: the Maastricht Study. Alzheimers Dement,2022. doi: 10.1002/alz.12758 [44] ABROUS D N, ADRIANI W, MONTARON M F, et al. Nicotine self-administration impairs hippocampal plasticity. J Neurosci,2002,22(9): 3656–3662. doi: 10.1523/JNEUROSCI.22-09-03656.2002 -