欢迎来到《四川大学学报(医学版)》

胸主动脉夹层发病机制研究进展

高文博 余泓池 张瑶佳 钱宏 刘肖珩

高文博, 余泓池, 张瑶佳, 等. 胸主动脉夹层发病机制研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 699-704. doi: 10.12182/20230260101
引用本文: 高文博, 余泓池, 张瑶佳, 等. 胸主动脉夹层发病机制研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 699-704. doi: 10.12182/20230260101
GAO Wen-bo, YU Hong-chi, ZHANG Yao-jia, et al. Latest Findings on the Pathogenic Mechanisms of Thoracic Aortic Dissection[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 699-704. doi: 10.12182/20230260101
Citation: GAO Wen-bo, YU Hong-chi, ZHANG Yao-jia, et al. Latest Findings on the Pathogenic Mechanisms of Thoracic Aortic Dissection[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCES), 2023, 54(3): 699-704. doi: 10.12182/20230260101

胸主动脉夹层发病机制研究进展

doi: 10.12182/20230260101
基金项目: 国家自然科学基金(No. 11932014、No.31971239)和四川省科技计划(No. 2022NSFSC0765、No. 2022ZYD0079)资助
详细信息
    通讯作者:

    E-mail:liuxiaohg@scu.edu.cn

Latest Findings on the Pathogenic Mechanisms of Thoracic Aortic Dissection

More Information
  • 摘要: 胸主动脉夹层是一种高致死率(65%~85%)的心血管疾病。外科手术辅助植/介入支架是治疗胸主动脉夹层的主要方式,但手术治疗会引起严重的术后并发症,患者术后具有较高的死亡风险。由于其发病机制尚不清楚,故缺乏有效的药物治疗策略。近年来,随着单细胞测序等新技术的发展,初步证实血管平滑肌细胞的功能紊乱在胸主动脉夹层发生发展过程中起着特殊作用。目前,调控血管平滑肌细胞功能紊乱的分子机制已得到初步研究,相关成果可望为寻找潜在的药物治疗靶点提供新思路,有助于开发防治胸主动脉夹层的新策略。本文总结了血管平滑肌细胞功能失衡在胸主动脉夹层发生发展过程中的重要作用,详细介绍了调控血管平滑肌细胞功能紊乱的生物因素及相关分子机制,为明确血管平滑肌细胞功能紊乱在胸主动脉夹层发生发展过程中的核心地位以及寻找有效的药物分子靶标提供参考依据。
  • 表  1  与TAD相关的致病基因[6-8]

    Table  1.   Pathogenic genes associated with TAD

    CategoryGeneKey functionsConsequences of mutations
    Genes associated with contraction, differentiation, and proliferation of VSMCs MYH11 Encoding smooth muscle myosin heavy chain and involvement in smooth muscle cell contraction Familial thoracic aortic aneurysm and increased risk of dissection in the thoracic aorta
    MYLK Encoding myosin light chain kinase and involvement in smooth muscle cell contraction Familial thoracic aortic aneurysm and dissection
    PRKG1 Encoding type Ⅰ cyclic GMP-dependent protein kinase, which controls smooth muscle cell relaxation Association with thoracic aortic aneurysm and acute aortic dissection
    FLNA Encoding filamin-A and involvement in smooth muscle cell contraction Cardiac valvular dysplasia
    MAT2A Encodeing the enzyme MAT Ⅱa Association with thoracic aortic aneurysm
    FOXE3 Encoding a transcription factor involved in cellular differentiation Increased risk of aortic dissection
    Extracellular matrix-associated genes LOX Encoding the majority of lysyl oxidase in the aorta Marfan syndrome and increases in aortic aneurysm and dissections
    FBN1 Encoding fibrillin 1 and formation of microfibrils Marfan syndrome
    FBN2 Encoding fibrillin 2 and formation of microfibrils Marfan syndrome and aortic root dilatation
    COL3A1 Encoding type Ⅲ collagen and synthesis of extracellular matrix collagen Vascular Ehlers-Danlos syndrome and increased risk of dissection in the thoracic aorta
    COL5A1 Encoding type Ⅴ collagen and synthesis of extracellular matrix collagen Vascular Ehlers-Danlos syndrome
    COL1A2 Encoding type Ⅰ collagen and synthesis of extracellular matrix collagen Vascular Ehlers-Danlos syndrome and aortic regurgitation
    MFAP5 Encoding structural proteins of elastin fibres and microfibrils Increased risk of aortic dissection
    TGF-β signalling pathway and its associated receptor protein genes TGF-βR1&TGF-βR2 Encoding receptors involved in TGFβ signalling Loeys-Dietz syndrome and increased risk of dissection in the thoracic aorta
    SMAD2&SMAD3&SMAD4 Modulating transcription factors involved with the extracellular matrix Increased risk of dissection
     MYH11: myosin heavy chain 11; MYLK: myosin light chain kinase; PRKG1: protein kinase c GMP-dependent 1; FLNA: filamin A; MAT2A: methionine adenosyltransferase 2A; FOXE3: forkhead box protein E3; LOX: lysyl oxidase; FBN: fibrillin; COL3A1: collagen type Ⅲ, alpha-1 chain; COL5A1: collagen type Ⅴ, alpha-1 chain; COL1A2: collagen type Ⅰ, alpha-2 chain; MFAP5: microfibrillar-associated protein 5; TGF-βR: transforming growth factor-beta receptor; SMAD: mothers against decapentaplegic homolog.
    下载: 导出CSV
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要. 中国循环杂志,2022,37(6): 553–578. doi: 10.3969/j.issn.1000-3614.2022.06.001
    [2] NIENABER C A, CLOUGH R E, SAKALIHASAN N, et al. Aortic dissection. Nat Rev Dis Primers,2016,2: 16053. doi: 10.1038/nrdp.2016.53
    [3] MILEWICZ D M, TRYBUS K M, GUO D C, et al. Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol,2017,37(1): 26–34. doi: 10.1161/atvbaha.116.303229
    [4] ARNAUD P, HANNA N, BENARROCH L, et al. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD). Genet Med,2019,21(9): 2015–2024. doi: 10.1038/s41436-019-0444-y
    [5] GOLDFINGER J Z, HALPERIN J L, MARIN M L, et al. Thoracic aortic aneurysm and dissection. J Am Coll Cardiol,2014,64(16): 1725–1739. doi: 10.1016/j.jacc.2014.08.025
    [6] MILEWICZ D M, BRAVERMAN A C, De BACKER J, et al. Marfan syndrome. Nat Rev Dis Primers,2021,7(1): 64. doi: 10.1038/s41572-021-00298-7
    [7] PINARD A, JONES G T, MILEWICZ D M. Genetics of thoracic and abdominal aortic diseases. Circ Res,2019,124(4): 588–606. doi: 10.1161/CIRCRESAHA.118.312436
    [8] THAKKER P D, BRAVERMAN A C. Cardiogenetics: genetic testing in the diagnosis and management of patients with aortic disease. HEART,2021,107(8): 619–626. doi: 10.1136/heartjnl-2020-317036
    [9] ALKHOULI M, ALQAHTANI F, ZIADA K M, et al. Contemporary trends in the management of aortic stenosis in the USA. Eur Heart J,2020,41(8): 921–928. doi: 10.1093/eurheartj/ehz568
    [10] GAWINECKA J, SCHONRATH F, Von ECKARDSTEIN A. Acute aortic dissection: pathogenesis, risk factors and diagnosis. Swiss Med Wkly,2017,147: w14489. doi: 10.4414/smw.2017.14489
    [11] HIBINO M, OTAKI Y, KOBEISSI E, et al. Blood pressure, hypertension, and the risk of aortic dissection incidence and mortality: results from the J-SCH Study, the UK Biobank Study, and a Meta-Analysis of Cohort Studies. Circulation,2022,145(9): 633–644. doi: 10.1161/CIRCULATIONAHA.121.056546
    [12] HUMPHREY J D, SCHWARTZ M A, TELLIDES G, et al. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res,2015,116(8): 1448–1461. doi: 10.1161/CIRCRESAHA.114.304936
    [13] ROMBOUTS K B, Van MERRIENBOER T A R, KET J C F, et al. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest,2022,52(4): e13697. doi: 10.1111/eci.13697
    [14] REN W, LIU Y, WANG X, et al. β-Aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice. Sci Rep,2016,6: 28149. doi: 10.1038/srep28149
    [15] PAPE L A, AWAIS M, WOZNICKI E M, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the International Registry of Acute Aortic Dissection. J Am Coll Cardiol,2015,66(4): 350–8. doi: 10.1016/j.jacc.2015.05.029
    [16] BOSSONE E, LABOUNTY T M, EAGLE K A. Acute aortic syndromes: diagnosis and management, an update. Eur Heart J,2018,39(9): 739–749d. doi: 10.1093/eurheartj/ehx319
    [17] PEDROZA A J, TASHIMA Y, SHAD R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in marfan syndrome aortic aneurysm. Arterioscler Thromb Vasc Biol,2020,40(9): 2195–2211. doi: 10.1161/ATVBAHA.120.314670
    [18] JIA L X, ZHANG W M, ZHANG H J, et al. Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection. J Pathol,2015,236(3): 373–83. doi: 10.1002/path.4534
    [19] QIU L, YI S, YU T, et al. Sirt3 protects against thoracic aortic dissection formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of smooth muscle cells. Front Cardiovasc Med,2021,8: 675647. doi: 10.3389/fcvm.2021.675647
    [20] LUO W, WANG Y, ZHANG L, et al. Critical role of cytosolic DNA and its sensing adaptor STING in aortic degeneration, dissection, and rupture. Circulation,2020,141(1): 42–66. doi: 10.1161/CIRCULATIONAHA.119.041460
    [21] REN K, LI B, LIU Z, et al. GDF11 prevents the formation of thoracic aortic dissection in mice: Promotion of contractile transition of aortic SMCs. J Cell Mol Med,2021,25(10): 4623–4636. doi: 10.1111/jcmm.16312
    [22] YANG K, REN J, LI X, et al. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. Eur Heart J,2020,41(26): 2442–2453. doi: 10.1093/eurheartj/ehaa352
    [23] LI G, WANG M, CAULK A W, et al. Chronic mTOR activation induces a degradative smooth muscle cell phenotype. J Clin Invest,2020,130(3): 1233–1251. doi: 10.1172/JCI131048
    [24] CLEMENT M, CHAPPELL J, RAFFORT J, et al. Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms. Arterioscler Thromb Vasc Biol,2019,39(6): 1149–1159. doi: 10.1161/ATVBAHA.118.311727
    [25] AN Z, QIAO F, LU Q, et al. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection. Heart Vessels,2017,32(12): 1523–1535. doi: 10.1007/s00380-017-1054-8
    [26] IJAZ T, TILTON R G, BRASIER A R. Cytokine amplification and macrophage effector functions in aortic inflammation and abdominal aortic aneurysm formation. J Thorac Dis,2016,8(8): E746–54. doi: 10.21037/jtd.2016.06.37
    [27] PAN H, XUE C, AUERBACH B J, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation,2020,142(21): 2060–2075. doi: 10.1161/CIRCULATIONAHA.120.048378
    [28] Van Der PALEN R L, BARKER A J, BOLLACHE E, et al. Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients. J Cardiovasc Magn Reson,2017,19(1): 30. doi: 10.1186/s12968-017-0345-7
    [29] JIA L, WEI F, WANG L, et al. Wall shear stress regulates the proliferation and migration of vascular smooth muscle cells depending on a TGF-β1 manner. J Cell Physiol,2019,234(9): 16205–16214. doi: 10.21203/rs.2.16452/v1
    [30] Van ENGELAND N C A, SUAREZ RODRIGUEZ F, RIVERO-MULLER A, et al. Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress. Sci Rep,2019,9(1): 12415. doi: 10.1038/s41598-019-48218-w
    [31] JIANG W J, REN W H, LIU X J, et al. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein. Aging (Albany NY),2016,8(9): 1923–1939. doi: 10.18632/aging.101033
    [32] TANG T, FAN W, ZENG Q, et al. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta,2020,501: 222–228. doi: 10.1016/j.cca.2019.10.042
    [33] GONG J, ZHOU D, JIANG L, et al. In Vitro Lineage-specific differentiation of vascular smooth muscle cells in response to SMAD3 deficiency: implications for SMAD3-related thoracic aortic aneurysm. Arterioscler Thromb Vasc Biol,2020,40(7): 1651–1663. doi: 10.1161/ATVBAHA.120.313033
    [34] WANG Y, YIN P, CHEN Y H, et al. A functional variant of SMAD4 enhances macrophage recruitment and inflammatory response via TGF-β signal activation in Thoracic aortic aneurysm and dissection. Aging (Albany NY),2018,10(12): 3683–3701. doi: 10.18632/aging.101662
    [35] LI B, WANG Z, HU Z, et al. P38 MAPK signaling pathway mediates angiotensin Ⅱ-induced miR143/145 gene cluster downregulation during aortic dissection formation. Ann Vasc Surg,2017,40: 262–273. doi: 10.1016/j.avsg.2016.09.016
    [36] MILEWICZ D M, PRAKASH S K, RAMIREZ F. Therapeutics targeting drivers of thoracic aortic aneurysms and acute aortic dissections: insights from predisposing genes and mouse models. Annu Rev Med,2017,68: 51–67. doi: 10.1146/annurev-med-100415-022956
    [37] FERRUZZI J, MURTADA S I, LI G, et al. Pharmacologically improved contractility protects against aortic dissection in mice with disrupted transforming growth factor-β signaling despite compromised extracellular matrix properties. Arterioscler Thromb Vasc Biol,2016,36(5): 919–927. doi: 10.1161/atvbaha.116.307436
    [38] LI Y, REN P, DAWSON A, et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation,2020,142(14): 1374–1388. doi: 10.1161/CIRCULATIONAHA.120.046528
  • 加载中
表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2023-02-11
  • 网络出版日期:  2023-05-20
  • 刊出日期:  2023-05-20

目录

    /

    返回文章
    返回