欢迎来到《四川大学学报(医学版)》 2025年5月6日 星期二

正常孕妇及妊娠糖尿病患者胆固醇7α-羟化酶基因-204A/C多态性的研究

刘思旭, 白怀, 关林波, 刘兴会, 范平, 周密, 吴玉洁, 唐芳梅, 王玉峰, 李德华

刘思旭, 白怀, 关林波, 等. 正常孕妇及妊娠糖尿病患者胆固醇7α-羟化酶基因-204A/C多态性的研究[J]. 四川大学学报(医学版), 2023, 54(2): 361-366. DOI: 10.12182/20230160512
引用本文: 刘思旭, 白怀, 关林波, 等. 正常孕妇及妊娠糖尿病患者胆固醇7α-羟化酶基因-204A/C多态性的研究[J]. 四川大学学报(医学版), 2023, 54(2): 361-366. DOI: 10.12182/20230160512
LIU Si-xu, BAI Huai, GUAN Lin-bo, et al. Cholesterol 7α-Hydroxylase Gene-204A/C Polymorphism in Normal and Gestational Diabetic Pregnancies[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(2): 361-366. DOI: 10.12182/20230160512
Citation: LIU Si-xu, BAI Huai, GUAN Lin-bo, et al. Cholesterol 7α-Hydroxylase Gene-204A/C Polymorphism in Normal and Gestational Diabetic Pregnancies[J]. Journal of Sichuan University (Medical Sciences), 2023, 54(2): 361-366. DOI: 10.12182/20230160512

正常孕妇及妊娠糖尿病患者胆固醇7α-羟化酶基因-204A/C多态性的研究

基金项目: 国家自然科学基金(No. 39870749)和四川省科技厅项目(No. 2019YFS0401)部分资助
详细信息
    通讯作者:

    李德华: E-mail:562372162@qq.com

Cholesterol 7α-Hydroxylase Gene-204A/C Polymorphism in Normal and Gestational Diabetic Pregnancies

More Information
  • 摘要:
      目的  探讨胆固醇7α-羟化酶基因(CYP7A1)-204A/C单核苷酸多态性与妊娠糖尿病(GDM)患者及正常孕妇血脂水平等的关系。
      方法  应用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)技术检测1037例正常妊娠者和627例GDM患者CYP7A1-204A/C基因多态性。酶法测定总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)和血糖(Glu),化学发光法测定血浆胰岛素(Ins)。免疫透射比浊法测定载脂蛋白A1(apoA1)和B(apoB)水平。
      结果  CYP7A1-204A/C多态位点等位基因A、C频率在GDM组和对照组分别为0.586、0.414和0.557、0.443。两组人群基因型频率分布均符合Hardy-Weinberg平衡定律。CYP7A1-204A/C多态性基因型频率、等位基因A、C频率在GDM组和正常对照组间比较差异无统计学意义。正常妊娠对照组CC基因型者较AA型者血浆apoA1水平增高,Ins和HOMA-IR水平降低(P均<0.05);正常妊娠对照组中非肥胖亚组CC基因型者血浆TG水平较AA基因型者增加(P<0.05)。在GDM组CYP7A1基因-204A/C多态性AA基因型者较CC型者孕期增重增加(P<0.05)。
      结论  CYP7A1基因-204A/C多态性与GDM无关联,但GDM患者CYP7A1基因-204A/C多态性与孕期增重密切相关。该基因位点的变异在正常妊娠孕妇中与血浆apoA1、胰岛素和HOMA-IR水平密切相关,在非肥胖正常妊娠人群中与血浆TG水平增高密切相关。

     

    Abstract:
      Objective  To investigate the cholesterol 7α-hydroxylase gene (CYP7A1)-204A/C single nucleotide polymorphism and its relationship with the blood lipid levels of pregnant women with gestational diabetes mellitus (GDM) and normal pregnant women.
      Methods  The genotype and allele frequencies of CYP7A1-204A/C gene polymorphism of 1037 normal pregnant women, the normal controls, and 627 pregnant women with GDM were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and blood glucose (Glu) were measured by enzymatic assay. Chemiluminescence determination of plasma insulin (Ins) was conducted. Apolipoproteins A1 (apoA1) and B (apoB) were measured by the turbidimetric immunoassay.
      Results  Allele frequencies of A and C at the CYP7A1-204A/C polymorphic locus were 0.586 and 0.414, respectively, in the GDM group and 0.557 and 0.443, respectively in the control group. The distribution of genotype frequencies in both groups showed conformity with the Hardy-Weinberg principle. There was no significant difference in allele and genotype frequencies between the GDM group and the control group. In the control group, carriers of the genotype AA were associated with significantly higher concentrations of apoA1 and lower levels of Ins and homeostatic model assessment of insulin resistance (HOMA-IR) compared with those with genotype CC (all P<0.05). In the non-obese subgroup of the control subjects, carriers of the genotype CC were associated with significantly higher plasma TG or apoA1 levels compared with those with genotype AA (P<0.05). In the GDM group, carriers with genotype AA of CYP7A1-204A/C polymorphism had elevated levels of gestational weight gain (GWG) compared with those with genotype CC (P<0.05).
      Conclusion  These results suggest that 204A/C polymorphism in the CYP7A1 gene is not associated with GDM, but may be closely associated with gestational weight gain in pregnant women with GDM. Variants in this locus are strongly associated with plasma apoA1, Ins, and HOMA-IR levels in the controls and elevated plasma TG levels in non-obese controls.

     

  • 华法林是一种口服抗凝药,因其便宜有效而在临床广泛应用,其通过作用于维生素K(vitamin K,VK)过氧化物还原酶复合体1(VKORC1)影响机体VK的水平,从而影响VK依赖的凝血因子进而发挥抗凝作用。尽管目前新型口服抗凝药在临床上发挥着越来越重要的作用,但华法林在心脏机械瓣膜置换患者术后的抗凝地位依然难以被替代。既往研究显示,患者的人口学特征〔如年龄、体质量指数(BMI) 〕、疾病状态(如糖尿病、心功能不全)、饮食习惯(高VK饮食)、用药(如胺碘酮、他汀)等多种情况能显著影响华法林的治疗剂量和抗凝效果[1-4]。此外,基因组学研究发现,VKORC1和华法林的代谢酶细胞色素P-450 2C9(CYP2C9)以及VK的代谢酶细胞色素P-450 4F2(CYP4F2)的基因多态性亦能显著影响华法林的剂量[4-7]。通常临床上将华法林剂量分为应用初始阶段国际标准化比值(INR)未达到稳态的初始剂量和目标INR达到稳态后的稳定剂量。目前有关CYP4F2基因多态性对华法林剂量的影响主要集中在稳定剂量,而有关其对华法林初始剂量影响的研究较少,故本研究拟分析CYP4F2基因多态性对心脏机械瓣膜置换术后患者华法林初始剂量的影响。

    收集2013年1月−2015年12月期间于我院心脏外科接受心脏机械瓣膜置换术的患者,入选患者年龄大于18岁小于70岁。排除标准:严重的肝肾功能异常、严重的心功能不全、术后出现可疑感染、INR>4.0和华法林应用小于3 d以及个人信息不完善。本研究定义华法林初始剂量为心脏机械瓣膜术后5~10 d患者住院期间的平均每日剂量。INR的治疗目标为2.0~3.0,术后初始阶段INR≥2的患者称为达标组,INR<2的患者称为非达标组。记录每位患者的性别、年龄、身高、BMI、合并疾病以及主要用药情况等。本研究经由我院伦理委员会批准(伦理批号为:K201906-13)。

    所有入选患者利用EDTA抗凝管留取血样4 mL保存于低温冰箱备用。根据试剂说明书利用TIANamp Genomic DNA Kit(Tiangen Biotech,Beijing,China)提取患者DNA样品。利用Taqman SNP Genotyping assay(C_16179493_40,Applied Biosystems)在ABI 7500 Real Time-Polymerase chain reaction(RT-PCR)System(Applied Biosystems)上检测CYP4F2的单核苷酸多态性(single nucleotide polymorphisms,SNPs)。10 μL PCR反应体系:95 ℃ 2 min,(95 ℃15 s,60 ℃ 30 s,68 ℃ 30 s)×30 cycles,68 ℃ 10 min,4 ℃ forever。除此之外,我们还检测了所有患者的CYP2C9(rs1799853,rs1057910)和VKORC1-1639(rs9923231)的基因型,方法同上(PCR反应条件除外退火温度外均相同),具体引物(引物合成公司为Thermo Fisher Scientific)和退火温度参考表1

    表  1  引物序列信息
    Table  1.  Information of primer sequences
    Gene typePrimer sequenceAnnealing temperature
    VKORC1-1639
     (rs9923231)
    F: GTGTCACCAAGACGCTAGAC 57 ℃
    R: GTGAGAAACAGCATCTGGAG
    CYP2C9*2
     (rs1799853)
    F: ATGGATATGAAGCAGTGAAGG 56 ℃
    R: ATGAGCTAACAACCAGGACT
    CYP2C9*3
     (rs1057910)
    F: TTTCTGGTTGTTTTGTGGAC 56 ℃
    R: ACATGGAGTTGCAGTGTAGG
    CYP4F2
     (rs2108622)
    F: CCGTTCCCACCTCAGACAC 60 ℃
    R: GGTCATCTCCCGCCATGT
     CYP2C9: Cytochrome P-450 2C9; VKORC1: Vitamin K epoxide reductase complex1; CYP4F2: Cytochrome P-450 4F2.
    下载: 导出CSV 
    | 显示表格

    所有数据用例数(%)或$ \bar{x}\pm s $表示。利用Chi-squared goodness of fit test检测CYP4F2基因的Hardy-Weinberg平衡。利用Fisher确切概率法、t检验比较患者基线特征。利用one way ANOVA或t检验比较不同CYP4F2基因型患者华法林初始剂量的差异;利用多元线性回归模型分析影响华法林初始剂量的影响因素。P<0.05为差异有统计学意义。

    本研究共入选350例患者;其中男性162人(46.3%),女性188人(53.7%),平均年龄(53.01±13.46)岁;BMI(23.90±3.56) kg/m2;携带CYP2C9*1*1基因型的患者308例(88.0%),携带CYP2C9*1*2或*1*3基因型的患者33例(9.4%),携带CYP2C9*2*3或*3*3基因型的患者9例(9.4%);携带VKORC1 GG基因型的患者4例(1.1%),携带VKORC1 GA基因型的患者70例(20.0%),携带VKORC1 AA基因型的患者276例(78.9%);携带CYP4F2 CC基因型的患者194例(55.4%),携带CYP4F2 CT基因型的患者125例(35.7%),携带CYP4F2 TT基因型的患者31例(8.9%);其中二尖瓣置换207例(59.1%),主动脉瓣置换143例(40.9%);合并高血压174例(49.7%)、冠心病116例(33.1%)、糖尿病42例(12.0%)、房颤78例(22.3%)。本研究中,CYP4F2基因型分布符合Hardy-Weinberg平衡(P>0.05)。不同CYP4F2基因型患者基线资料差异无统计学意义(P>0.05)。见表2

    表  2  不同CYP4F2基因型患者基线资料的比较
    Table  2.  Baseline characteristics of patients in different CYP4F2 genotypes
    VariableCYP4F2 CC (n=194)CYP4F2 CT (n=125)CYP4F2 TT (n=31)P
    Male/case (%) 96 (49.5) 51 (40.8) 15 (48.4) 0.577
    Age/yr. 52.94±12.70 53.52±13.77 51.38±17.03 0.740
    Height/cm 164.10±8.21 164.87±7.92 163.31±8.18 0.566
    Body mass/kg 64.94±12.25 65.07±11.63 62.21±11.59 0.488
    BMI/(kg/m2) 24.02±3.60 23.86±3.48 23.25±3.63 0.558
    MVR/case (%) 114 (58.8) 71 (56.8) 22 (71.0) 0.379
    AVR/case (%) 80 (41.2) 54 (43.2) 9 (29.0) 0.672
    Hypertension/case (%) 101 (52.1) 62 (49.6) 11 (35.5) 0.427
    CHD/case (%) 63 (32.5) 45 (36.0) 8 (25.8) 0.671
    Diabetes mellitus/case (%) 26 (13.4) 14 (11.2) 2 (6.5) 0.213
    Atrial fibrillation/case (%) 49 (25.3) 24 (19.2) 5 (16.1) 0.332
     CYP2C9: Cytochrome P-450 2C9; VKORC1: Vitamin K epoxide reductase complex 1; CYP4F2: Cytochrome P-450 4F2; BMI: Body mass index; MVR: Mitral valve replacement; AVR: Aortic valve replacement; CHD: Coronary heart disease.
    下载: 导出CSV 
    | 显示表格

    图1所示,在本研究所有患者群体中,CYP4F2 CC、CYP4F2 CT和CYP4F2 TT基因型患者的华法林初始剂量分别为(3.18±0.88) mg、(3.38±1.00) mg和(3.47±0.74) mg,差异无统计学意义。在INR达标组,CYP4F2 CC、CYP4F2 CT和CYP4F2 TT基因型患者的华法林初始剂量分别为(2.94±0.74) mg、(3.18±0.82) mg和(3.37±0.68) mg,CYP4F2 TT基因型患者的华法林初始剂量高于CYP4F2 CC基因型患者(P<0.05)。在INR未达标组,CYP4F2 CC、CYP4F2 CT和CYP4F2 TT基因型患者的华法林初始剂量分别为(4.02±0.58) mg、(4.15±0.88) mg和(3.87±0.72) mg,组间差异无统计学意义。同基因型患者相比较,未达标组CYP4F2 CC和CYP4F2 CT基因型患者华法林的初始剂量大于INR达标组患者(P<0.05)。

    图  1  CYP4F2基因多态性对华法林初始剂量的影响
    Figure  1.  The effect of CYP4F2 polymorphism on initial warfarin dose
    INR: International normalized ratio. *P<0.05, vs. CYP4F2 CC of INR≥2 group; # P<0.05, vs. CYP4F2 CT of INR≥2 group.

    纳入性别,年龄,BMI,合并疾病(高血压、糖尿病、冠心病、房颤),CYP2C9、CYP4F2和VKORC1基因多态性以及INR达标与否等因素进行多元线性回归分析,回归方程为:华法林剂量(mg)=−8.634+0.352×BMI(kg/m2)+1.102×CYP4F2基因型(CC或CT取值1,TT取值2)+2.147×VKORC1(AA或AG取值1,GG取值2)+1.325×INR(达标取值0,不达标取值1),回归方程的决定系数R2=0.431(P<0.05)。本研究发现影响华法林初始剂量的因素有CYP4F2和VKORC1基因多态性、INR达标与否和BMI,上述4个变量可以解释约43.1%的华法林初始剂量的个体差异。

    本研究中我们系统分析了CYP4F2基因多态性对心脏机械瓣膜置换术后患者华法林初始剂量的影响,结果提示,在华法林治疗的初始阶段,CYP4F2基因多态性对华法林的初始剂量有影响。

    CYP4F2是一种VK代谢酶,其基因变异可引起VK的氧化酶活性减低,从而导致机体VK水平升高,进一步引起VK依赖的凝血因子水平升高,从而需要更高的华法林剂量来达到抗凝的目标[8-9]。众多研究显示其多态性能影响华法林的稳定剂量[10-14]。由于华法林的安全窗口小和出血风险高以及患者个体差异大,华法林应用初始阶段的剂量调整非常复杂,华法林应用的个体化指导一直是临床努力的方向。华法林应用的初始阶段普遍指华法林开始应用后INR未能稳定的一段时间,大多研究选取华法林应用起始的1~2周[15-20],该时间段是华法林应用和调整的关键阶段,也是INR达标的关键时间点。本研究根据患者心脏机械瓣膜置换术后不同患者华法林的应用和住院情况选取术后5~10 d为华法林应用的初始阶段。

    本研究结果显示,在华法林应用初始阶段的整体患者人群中,CYP4F2不同基因型间华法林初始剂量差异并无统计学意义。而考虑到本研究患者人群在术后住院观察期间INR并不能完全达标的情况,我们对不同INR反应的人群进行了分层分析。结果发现,对于INR达标的患者来说,CYP4F2基因多态性能够影响华法林的初始剂量,该结果倾向于支持CYP4F2基因多态性影响华法林稳定剂量的研究[11-14],即在INR达标甚至稳定后CYP4F2基因多态性能显著影响华法林的剂量。该结果也支持理论上CYP4F2基因变异影响华法林的机制,即CYP4F2 TT基因型患者需要更大剂量的华法林才能达到INR的治疗目标。而对于INR不能达标的患者,我们发现CYP4F2基因多态性对华法林初始剂量的影响则并不明显,该结果提示,针对INR不能达标的患者,CYP4F2基因多态性可能并不能影响其华法林的初始剂量。但我们还发现,在华法林治疗的初始阶段,与INR达标的患者相比,INR未达标的患者使用了更高剂量的华法林。该现象提示可能有一些重要的未知因素影响着INR未达标患者的华法林初始剂量,也可能是本研究整体上未能发现CYP4F2基因多态性影响华法林初始剂量的重要原因。这也和部分研究结果相似,比如,VKORC1基因多态性对华法林稳定剂量的影响显著大于CYP4F2和CYP2C9基因多态性因素[4-5, 7],鉴于INR的不达标和华法林剂量未能稳定,其可能掩盖了CYP4F2基因多态性对华法林初始剂量的影响。

    本研究中,我们进一步行多元线性回归,分析了CYP4F2基因多态性对华法林初始剂量的影响,结果显示CYP4F2和 VKORC1基因多态性、INR达标与否和BMI均能影响华法林的初始剂量。该现象进一步表明,CYP4F2基因多态性对华法林初始剂量的影响也受到其他个体因素或基因多态性的影响。根据本研究中多因素回归分析结果和此前的研究结果分析,VKORC1基因多态性、BMI等因素可能是是这些未知因素的重要组成部分。因此,关于华法林的个体化治疗,仍需要更多的研究来加以补充和指导。

    综上,CYP4F2基因多态性可影响心脏机械瓣膜置换术后患者华法林的初始剂量,而这一作用也受到其他机体特征和基因多态性以及疾病因素的影响。因此,在华法林个体化治疗的过程中,我们在考虑CYP4F2基因多态性影响的同时还应考虑到患者个体因素和其他潜在因素的影响。

  • 图  1   CYP7A1-204A/C基因多态性位点BsaⅠ酶切电泳图

    Figure  1.   Electrophoresis of BsaⅠ digestion of the CYP7A1-204A/C gene polymorphisms

    M: marker; 2: AA genotype; 3, 4, 5: AC genotype; 1, 6, 7: CC genotype.

    表  1   GDM组和对照组临床和代谢指标的比较

    Table  1   Comparison of clinical and metabolic parameters between the GDM and the control groups

    IndicatorGDM group
    (n=627)
    Control group
    (n=1037)
    P
    Age/yr. 35.44±3.94 35.74±4.36 0.131
    Gestational age/weeks 39.99±0.96 39.22±0.96 0.000
    Prepregnancy BMI/(kg/m2) 22.25±3.12 21.17±2.72 0.000
    Gestational weight gain/kg 11.50±4.20 13.92±4.25 0.000
    Delivery BMI/(kg/m2) 25.81±3.38 26.64±2.70 0.272
    SBP/mmHg 115.96±11.04 115.28±10.09 0.189
    DBP/mmHg 72.81±8.70 72.23±7.66 0.163
    Fasting Ins/(pmol/L) 95.74±118.78 71.32±31.68 0.001
    Fasting Glu/(mmol/L) 4.61±0.79 4.39±0.71 0.000
    HOMA-IR 3.53±8.91 2.19±2.40 0.000
    Triglycerides/(mmol/L) 3.88±1.63 3.66±1.43 0.006
    TC/(mmol/L) 5.97±1.24 6.09±1.07 0.047
    HDL-C/(mmol/L) 1.98±0.44 2.00±0.41 0.470
    LDL-C/(mmol/L) 2.95±0.95 3.20±0.99 0.000
    Apo A1/(g/L) 2.29±0.36 2.37±0.43 0.000
    Apo B/(g/L) 1.15±0.25 1.15±0.26 0.912
     BMI: body mass index; SBP: systolic blood pressere; DBP: diastolic blood pressure; Ins: Insulin; Glu: glucose; HOMA-IR: homeostatic model assessment of insulin resistance; TC: total cholesterol; HDL-C: high-density lipoprotein; LDL-C: low-density lipoprotein; Apo A1: apolipoprotein A1; Apo B1: apolipoprotein B1.
    下载: 导出CSV

    表  2   GDM组和对照组CYP7A1-204A/C基因型及等位基因频率分布

    Table  2   Distribution of CYP7A1-204A/C genotype and allele frequency in GDM and control groups

    ItemGDM group/frequency (case), n=627Control group/frequency (case), n=1037P
    Genotype 0.262
     AA 0.346 (217) 0.310 (322)
     AC 0.480 (301) 0.494 (512)
     CC 0.174 (109) 0.196 (203)
    Allele 0.112
     A 0.586 (735) 0.557 (1156)
     C 0.414 (519) 0.443 (918)
     The numbers in the parentheses indicate the number of subjects for each genotype or the number of alleles of each type.
    下载: 导出CSV

    表  3   GDM组和对照组中不同CYP7A1-204A/C多态性基因型亚组临床和代谢指标比较

    Table  3   Comparison of clinical and metabolic parameters of different genotypes of CYP7A1-204A/C polymorphism in GDM and control groups

    IndicatorGDM groupControl group
    AA (n=217) AC (n=301) CC (n=109) AA (n=322) AC (n=512) CC (n=203)
    Delivery BMI/(kg/m2) 26.98±3.01 26.76±3.41 26.63±3.95 26.68±2.82 26.73±2.63 26.38±2.66
    Gestational weight gain/kg 11.96±4.37 11.44±4.19 10.80±3.84* 13.86±3.63 13.91±4.80 14.03±3.59
    Fasting Ins/(pmol/L) 15.32±17.80 15.61±24.98 12.67±8.76 11.50±9.48 10.76±6.98 9.64±4.64**
    Fasting Glu/(mmol/L) 4.55±0.59 4.63±0.90 4.67±0.77 4.42±0.74 4.38±0.78 4.34±0.39
    HOMA-IR 3.32±4.76 3.93±12.06 2.80±2.37 2.46±3.54 2.14±1.84 1.88±0.96*
    Triglycerides/(mmol/L) 4.00±1.89 3.81±1.50 3.81±1.44 3.66±1.56 3.67±1.35 3.61±1.41
    TC/(mmol/L) 5.93±1.14 6.04±1.38 5.89±1.00 6.05±1.18 6.07±1.02 6.19±1.03
    HDL-C/(mmol/L) 1.97±0.43 1.99±0.45 1.99±0.42 1.96±0.39 2.02±0.42* 2.00±0.39
    LDL-C/(mmol/L) 2.91±0.89 3.02±1.02 2.86±0.83 3.22±1.17 3.14±0.88 3.29±0.90
    Apo A1/(g/L) 2.27±0.35 2.31±0.39 2.28±0.33 2.31±0.39 2.39±0.41 2.40±0.51*
    Apo B/(g/L) 1.14±0.26 1.15±0.24 1.14±0.24 1.16±0.28 1.14±0.24 1.17±0.24
     The abbreviations are explained in the note to Table 1. * P<0.05, ** P<0.01, vs. the same group of AA genotype carriers.
    下载: 导出CSV

    表  4   肥胖和非肥胖对照孕妇CYP7A1基因-204A/C多态性不同基因型亚组临床和代谢指标

    Table  4   Clinical and metabolic parameters of CYP7A1 gene-204A/C genotypes in obese and non-obese control subjects

    IndicatorObese control groupNon-obese control group
    AA (n=241)AC (n=376)CC (n=137)AA (n=76)AC (n=129)CC (n=65)
    Delivery BMI/(kg/m2) 27.76±2.33 27.80±2.11 27.78±1.96 23.37±1.10 23.64±1.05 23.44±1.09
    Gestational weight gain/kg 14.38±3.68 14.44±5.15 14.83±3.58 12.23±3.04 12.22±3.07 12.39±3.06
    Fasting Ins/(pmol/L) 11.42±7.04 11.00±4.84 10.11±4.82* 11.76±14.48 10.01±11.11 8.74±4.15
    Fasting Glu/(mmol/L) 4.41±0.72 4.37±0.42 4.37±0.43 4.50±0.80 4.42±1.36 4.26±0.29
    HOMA-IR 2.36±2.72 2.16±1.05 2.00±1.01 2.76±5.27 2.05±3.19 1.66±0.80
    Triglycerides/(mmol/L) 3.81±1.70 3.76±1.41 3.56±1.35 3.20±0.92 3.42±1.17 3.73±1.53*
    TC/(mmol/L) 6.00±1.19 6.01±1.03 6.10±1.03 6.24±1.17 6.24±1.00 6.37±1.00
    HDL-C/(mmol/L) 1.93±0.39 1.99±0.40 1.96±0.37 2.02±0.39 2.13±0.44 2.07±0.42
    LDL-C/(mmol/L) 3.15±1.20 3.08±0.88 3.28±0.93 3.45±1.09 3.30±0.87 3.33±0.83
    Apo A1/(g/L) 2.33±0.39 2.38±0.41 2.38±0.54 2.25±0.39 2.42±0.43** 2.43±0.44*
    Apo B/(g/L) 1.15±0.27 1.13±0.25 1.15±0.25 1.20±0.31 1.17±0.23 1.19±0.23
     The abbreviations are explained in the note to Table 1. * P<0.05, ** P<0.01, vs. the same group of AA genotype carriers.
    下载: 导出CSV
  • [1]

    ACOG Practice Bulletin. No. 190: Gestational diabetes mellitus. Obstet Gynecol,2018,131(2): e49–e64. DOI: 10.1097/AOG.0000000000002501

    [2]

    JUAN J, YANG H. Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int J Environ Res Public Health,2020,17(24): 9517. DOI: 10.3390/ijerph17249517

    [3]

    ZHANG C, BAO W, RONG Y, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update,2013,19(4): 376–390. DOI: 10.1093/humupd/dmt013

    [4]

    RYCKMAN K K, SPRACKLEN C N, SMITH C J, et al. Maternal lipid levels during pregnancy and gestational diabetes: a systematic review and meta-analysis. BJOG,2015,122(5): 643–651. DOI: 10.1111/1471-0528.13261

    [5]

    LÓPEZ-TINOCO C, ROCA M, GARCÍA-VALERO A, et al. Oxidative stress and antioxidant status in patients with late-onset gestational diabetes mellitus. Acta Diabetol,2013,50(2): 201–208. DOI: 10.1007/s00592-011-0264-2

    [6]

    MRIZAK I, ARFA A, FEKIH M, et al. Inflammation and impaired endothelium-dependant vasodilatation in non obese women with gestational diabetes mellitus: preliminary results. Lipids Health Dis,2013,12: 93. DOI: 10.1186/1476-511X-12-93

    [7]

    RUSSELL D W. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem,2003,72: 137–174. DOI: 10.1146/annurev.biochem.72.121801.161712

    [8]

    RUSSELL D W, SETCHELL K D. Bile acid biosynthesis. Biochemistry,1992,31(20): 4737–4749. DOI: 10.1021/bi00135a001

    [9]

    LORBEK G, LEWINSKA M, ROZMAN D. Cytochrome P450s in the synthesis of cholesterol and bile acids-from mouse models to human diseases. FEBS J,2012,279(9): 1516–1533. DOI: 10.1111/j.1742-4658.2011.08432.x

    [10]

    HOFMAN M K, GROENENDIJK M, VERKUIJLEN P J, et al. Modulating effect of the A-278C promoter polymorphism in the cholesterol 7alpha-hydroxylase gene on serum lipid levels in normolipidaemic and hypertriglyceridaemic individuals. Eur J Hum Genet,2004,12(11): 935–941. DOI: 10.1038/sj.ejhg.5201236

    [11]

    ZHOU M, LIU X H, LIU Q Q, et al. Lactonase activity, status, and genetic variations of paraoxonase 1 in women with gestational diabetes mellitus. J Diabetes Res,2020,2020: 3483427. DOI: 10.1155/2020/3483427

    [12]

    GUAN L, FAN P, LIU X, et al. Maternal GALNT2 variations affect blood pressure, atherogenic index, and fetal growth, depending on BMI in gestational diabetes mellitus. Front Endocrinol (Lausanne),2021,12: 690229. DOI: 10.3389/fendo.2021.690229

    [13]

    YE M, SUN J, CHEN Y, et al. Response of serum LDL cholesterol to oatmeal consumption depends on CYP7A1 rs3808607 genotype in Chinese. Asia Pac J Clin Nutr,2020,29(2): 423–433. DOI: 10.6133/apjcn.202007_29(2).0025

    [14]

    MATTHEWS D R, HOSKER J P, RUDENSKI A S, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia,1985,28(7): 412–419. DOI: 10.1007/BF00280883

    [15]

    WANG J, FREEMAN D J, GRUNDY S M, et al. Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J Clin Invest,1998,101(6): 1283–1291. DOI: 10.1172/JCI1343

    [16]

    REPA J J, LUND E G, HORTON J D, et al. Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. Reversal by cholic acid feeding. J Biol Chem,2000,275(50): 39685–39692. DOI: 10.1074/jbc.M007653200

    [17]

    POST S M, GROENENDIJK M, Van Der HOOGT C C, et al. Cholesterol 7alpha-hydroxylase deficiency in mice on an APOE*3-Leiden background increases hepatic ABCA1 mRNA expression and HDL-cholesterol. Arterioscler Thromb Vasc Biol,2006,26(12): 2724–2730. DOI: 10.1161/01.ATV.0000247260.42560.e1

    [18] 陈玉娟,张思仲,肖翠英,等. CYP7A1基因-204位点A/C变异对启动子活性的影响. 中国生物化学与分子生物学报,2006,22(6): 450–453. DOI: 10.3969/j.issn.1007-7626.2006.06.004
    [19]

    LI N, Van Der SIJDE M R, BAKKER S J, et al. Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels. Diabetes,2014,63(9): 3149–3158. DOI: 10.2337/db13-1800

    [20]

    LAWLOR D A, RELTON C, SATTAR N, et al. Maternal adiposity--a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol,2012,8(11): 679–688. DOI: 10.1038/nrendo.2012.176

    [21]

    LAWLOR D A. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition--an old hypothesis with new importance? Int J Epidemiol,2013,42(1): 7–29. DOI: 10.1093/ije/dys209

    [22]

    WARRINGTON N M, RICHMOND R, FENSTRA B, et al. Maternal and fetal genetic contribution to gestational weight gain. Int J Obes (Lond),2018,42(4): 775–784. DOI: 10.1038/ijo.2017.248

  • 期刊类型引用(7)

    1. 邢蓓蓓,申红,王巍,刘璞娟. 基于基因多态性的华法林个体化给药对老年心脏瓣膜置换术后并发症发生率的影响. 河北医科大学学报. 2025(01): 20-24 . 百度学术
    2. 陈桂尼,刘运仲,王月婵,陈少丽,何瑞玲. 心脏瓣膜病患者术后应用肝素钠与华法林抗凝致出血情况的比较及华法林抗凝致出血风险模型的构建. 中国医药. 2023(03): 345-349 . 百度学术
    3. 毛德龙,庄文芳. 人工神经网络用于华法林剂量模型的研究进展. 国际检验医学杂志. 2023(06): 740-744 . 百度学术
    4. 魏启武,张岩. 国人机械瓣置换术后的抗凝策略. 中国心血管病研究. 2023(06): 481-486 . 百度学术
    5. 潘爱丽,陈奇,张广琴. 利伐沙班与达比加群酯对冠心病合并非瓣膜性心房颤动患者治疗效果及对血清凝血因子的影响分析. 山西医药杂志. 2023(10): 762-765 . 百度学术
    6. 李红,那竹惠,冯雯娟,雷宇. 心脏机械瓣膜置换术后病人自我管理能力现状调查及影响因素分析. 全科护理. 2023(35): 4897-4901 . 百度学术
    7. 耿艳芳,程栋,李素珍. 低剂量达比加群酯对NVAF合并轻中度慢性肾损害患者的影响. 临床心电学杂志. 2022(01): 42-45 . 百度学术

    其他类型引用(1)

图(1)  /  表(4)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  285
  • PDF下载量:  19
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-04-26
  • 修回日期:  2022-12-20
  • 网络出版日期:  2023-03-19
  • 发布日期:  2023-03-19

目录

/

返回文章
返回