Extraction of Extracelluar Vesicles Derived from Mycobacterium tuberculosis and Their Effect on the Production of Reactive Oxygen Species and Expression of Inflammatory Factors in Mouse Bone Marrow-Derived Dendritic Cells
-
摘要:目的 提取结核分枝杆菌(M. tuberculosis, Mtb)胞外囊泡(extracellular vesicles, EVs),检测其形态、粒径大小及分布,研究Mtb-EVs对树突状细胞(dendritic cell, DC)胞内活性氧(ROS)和细胞因子水平的影响,初步探讨其对DC的免疫调节作用。方法 超滤浓缩法分离获取Mtb-EVs,BCA法检测蛋白浓度,负染电镜检测Mtb-EVs形态,纳米颗粒跟踪分析技术检测其粒径大小分布和浓度;无菌分离获取小鼠骨髓,经重组小鼠粒细胞-巨噬细胞集落刺激因子(rm GM-CSF)和重组小鼠白细胞介素-4(rm IL-4)联合诱导扩增出DC,并进行形态学及免疫表型鉴定;用不同剂量Mtb-EVs作用于DC,DCFH-DA荧光探针法检测DC胞内ROS水平,ELISA法检测DC细胞IL-1β和IL-6分泌。结果 超滤浓缩法提取的Mtb-EVs为大小不等的球状囊泡结构,形态典型,直径约100 nm;NanoSight纳米颗粒追踪仪检测结果显示,粒径峰值98.5 nm,平均粒径110.2 nm,主要分布在68.4~155.7 nm之间,小于250 nm囊泡数量占总量98.39%;体外定向诱导扩增的细胞具有典型DC的形态特征,纯度可达85%以上,透射电镜可见DC表面有丰富微绒毛及放射状突起,胞浆均匀,核膜清晰;102、103、104 particles/cell Mtb-EVs处理DC后,ROS 水平与Mtb-EVs剂量呈正相关(r= 0.9694 , P<0.05),并以剂量依赖方式诱导细胞释放产生IL-1β和IL-6(P<0.05)。结论 本研究建立了超滤浓缩法分离提取Mtb-EVs的技术流程,可得到形态完整、纯度较高、粒径分布集中的细胞外囊泡。同时,Mtb-EVs可以诱发DC胞内ROS水平上调,并以剂量依赖方式诱导细胞因子IL-1β和IL-6的释放。Abstract:Objective To isolate extracellular vesicles (EVs) from Mycobacterium tuberculosis (Mtb), to examine their morphology, particle size, and distribution, to study the effect of EVs derived from Mtb (Mtb-EVs) on intracellular reactive oxygen species (ROS) production and cytokine secretion in dendritic cells (DCs), and to make preliminary exploration of Mtb-EVs' effect on the immune regulation of DCs.Methods Mtb-EVs were obtained by ultrafiltration concentration and the protein concentration was determined by BCA assay. The morphology of Mtb-EVs was observed through negative staining electron microscopy (EM). The particle size distribution and concentration of Mtb-EVs were determined by nanoparticle tracking analysis (NTA). Mouse bone marrow was isolated through sterile procedures and mice myeloid DCs were induced and amplified by the combined use of recombinant mouse granulocyte-macrophage colony-stimulating factor (rm GM-CSF) and recombinant mouse interleukin-4 (rm IL-4). Then, morphological and immunophenotypic characterization was performed. After that, the DCs were treated with Mtb-EVs at different concentrations and CCK-8 assay was done to measure their effect on the survival rate of DCs and to identify the appropriate stimulation concentration for subsequent experimental procedures. The intracellular ROS levels of DCs were evaluated with DCFH-DA fluorescence probe and the cytokine secretion of DCs was determined by ELISA.Results EM observation showed that Mtb-EVs isolated by ultrafiltration concentration were spherical vesicles of varied sizes, all being approximately 100 nm in diameter and displaying typical morphology. NTA results from NanoSight nanoparticle tracker showed that the peak particle size was 98.5 nm, that the average particle size was 110.2 nm, and that the particle size was mainly distributed between 68.4-155.7 nm. Mtb-EVs that were smaller than 250 nm accounted for 98.39% of the total. Mouse myeloid DCs directionally induced and amplified in vitro displayed typical DC phenotype and morphology, and the purity exceeded 85%. EM verified the abundance of microvilli and radial protuberance on the surface of DCs, which had uniform cytoplasm and clear nuclear membrane. Loaded with Mtb-EVs at different concentrations, including 102, 103, and 104 particles/cell, the DCs had significantly upregulated levels of intracellular ROS (P<0.05). In addition, Mtb-EVs induced the release of IL-1β and IL-6 in a dose-dependent manner (P<0.05).Conclusion We established in the study a technical process for the extraction of Mtb-EVs by ultrafiltration concentration and obtained Mtb-EVs with sound morphology, high purity, and concentrated particle size distribution. Furthermore, Mtb-EVs can upregulate the intracellular ROS level in DCs and induce the release of IL-1β and IL-6 in a dose-dependent manner.
-
Keywords:
- Mycobacterium tuberculosis /
- Extracelluar vesicles /
- Dendritic cells
-
结核病是由结核分枝杆菌(Mycobacterium tuberculosis, Mtb)感染引起的慢性传染性疾病,可累及全身各个组织和器官。世界卫生组织已将结核病列为重点控制的三种传染病之一[1],鉴于目前Mtb耐药性日趋严重,结核病发病率和死亡率尚不能迅速有效控制和降低的严峻现实,加强对Mtb生物学特性与致病机制的研究具有十分重要的意义。树突状细胞(dendritic cell, DC)是机体免疫应答的重要启动和调节因素,具有极大的可塑性和功能多样性。DC表达多种受体,通过识别病原相关分子模式(pathogen-associated molecular patterns, PAMP)感知微生物及其成分来启动免疫反应,活化并激活一系列细胞防御机制。
细胞外囊泡(extracellular vesicles, EVs)的释放是一个与生命活动密切相关的过程,存在于几乎所有细胞类型中[2-3]。不同来源的EVs在产生方式、内含物质等方面具有较大的差异。细菌EVs最早是在大肠埃希菌(E.coli)的培养基中被发现。革兰阳性菌(G+)细胞壁较厚,曾一度被认为无法分泌EVs。直到2009年,LEE等[4]首次从金黄色葡萄球菌的培养上清液中分离出直径20~100 nm,具有球形脂双层膜结构的G+-EVs。之后,针对G+-EVs的研究越来越多,研究人员陆续从枯草芽孢杆菌、产气荚膜梭菌等细菌中分离出EVs[5]。目前,EVs被认为是细胞间通讯的有效载体,可传递生物信息、调节免疫应答,在原核生物致病过程中发挥重要作用[6]。EVs的提取是研究其在细菌毒力、应激应答及细胞间通讯机制的基础。本实验以Mtb为实验对象,建立了超滤浓缩法分离纯化Mtb-EVs的技术流程,通过检测其对DC胞内活性氧(reactive oxygen species, ROS)和细胞因子水平的影响,初步探讨Mtb-EVs对DC的免疫调节作用。
1. 材料与方法
1.1 材料
1.1.1 菌株和实验动物
M.tb(H37Ra株)购于中国药品生物制品检定所(GMCC),批号:93020-5。8~10周龄健康清洁级雄性C57BL/6(B6)小鼠购于扬州大学动物实验中心,许可证号:SCXK苏2007-0001。
1.1.2 主要试剂和仪器
超速离心机(Beckman L-80XP);100 KDa超滤离心管(Minipore);透射电镜HT-7700(Hitachi),ZetaVIEW纳米颗粒跟踪分析仪(PARTICLE METRIX);流式细胞仪FACS Calibur(BD);CO2恒温培养箱(Heraeus);倒置显微镜(Olympus);BCA蛋白定量试剂盒(上海碧云天);RPMI 1640干粉(Gibco);胎牛血清(fetal bovine serum, FBS; Hyclone);重组小鼠白细胞介素-4(recombinant mouse interleukin-4, rm IL-4)和粒细胞/巨噬细胞集落刺激因子(recombinant mouse granulocyte-macrophage colony-stimulating factor, rm GM-CSF)(Peprotech);多功能酶标仪(Synerge Ⅱ,美国Bio-Tex);ROS检测试剂盒(上海碧云天);细胞因子IL-1β和IL-6检测试剂盒(美国Bender公司);其它试剂均为进口分装或国产分析纯。
1.2 实验方法
1.2.1 超滤浓缩法提取Mtb-EVs
7H9液体培养基培养结核分枝杆菌H37Ra至光密度(OD)600值为1.0时收集菌液;4000×g离心15 min后,上清经0.22 μm微孔滤膜过滤除菌,滤液用截留相对分子质量100×103的超滤管浓缩(4000×g离心5 min),PBS洗涤2~3次,收集超滤离心管内浓缩液体(约原体积的1/10),转移至无菌超速离心管,150000×g,离心2 h,弃上清,沉淀重悬于400 μL PBS缓冲液中,−80 ℃ 冰箱中保存备用。
1.2.2 透射电镜检测Mtb-EVs形态
取10 µL样品滴加于铜网上沉淀1 min,滤纸与铜网垂直接触吸去多余液体。滴加质量分数2% 醋酸双氧铀10 μL于铜网上沉淀1 min,滤纸吸去多余液体,室温静置干燥后透射电镜(transmission electron microscope, TEM)观察形态,成像摄片。
1.2.3 纳米颗粒跟踪分析(nanoparticle tracking analysis, NTA)技术检测Mtb-EVs粒径大小分布和浓度
将制备的EVs悬液PBS稀释混匀后注入样本分析室中,调整参数进行粒径浓度测量,Zetasizer软件分析EVs颗粒粒径的数量分布信息。
1.2.4 BCA法测定Mtb-EVs的蛋白浓度
Mtb-EVs蛋白浓度的测定方法参见BCA 蛋白浓度测定试剂盒说明书。
1.2.5 DC的分离培养及鉴定
参照文献试验方法[7]并稍作调整,乙醚麻醉,颈椎脱臼处死小鼠,无菌取小鼠股骨及胫骨,用1 mL注射器抽取不含血清的RPMI 1640培养液冲洗骨髓腔直至骨变白。获取骨髓悬液经Tris-NH4Cl裂解红细胞后,RPMI 1640培养液洗涤,收集骨髓细胞沉淀,重悬于含10%胎牛血清的RPMI 1640完全培养基中,分至6孔培养板中,每孔补充完全培养基至4 mL,并加入rm GM-CSF至终质量浓度20 ng/mL、rm IL-4至终质量浓度为10 ng/mL。将细胞培养板置37 ℃、体积分数5%CO2孵箱中孵育48 h,吸管轻轻吹打弃去悬浮细胞。加入新鲜含相同浓度细胞因子的完全培养基,继续培养至第5天,半量换液;培养至第7天于倒置相差显微镜下观察,并采集细胞形态图像。轻轻吹打收集悬浮细胞及疏松贴壁细胞,Anti-Mouse CD11c-FITC染色后经流式细胞术鉴定DC纯度。收获细胞离心洗涤取沉淀,固定、脱水后常规方法制备超薄切片,醋酸铀-柠檬酸铅染色后,TEM观察DC超微结构。
1.2.6 CCK8法测DC的存活率
获取细胞按1×104/孔加入96孔板,常规培养24 h。每孔加入不同剂量(102、103、104、105 particles/cell)Mtb-EVs,另设对照组,37 ℃细胞培养箱培养24 h,每孔加入CCK-8溶液10 μL ,轻轻混匀后37 ℃继续孵育2 h。在酶标仪上以450 nm测定吸光度(A)值。依据以下公式计算细胞存活率:细胞存活率(%)=〔(实验孔A值−空白孔A值)/(对照孔A值−空白孔A值)〕×100%。根据细胞存活率选择后续实验所用的Mtb-EVs剂量。
1.2.7 DCFH-DA荧光探针法检测DC的ROS水平
DCFH-DA是非标记性荧光探针,本身没有荧光,进入细胞后可被胞内酯酶水解为DCFH。细胞内的活性氧可将无荧光的DCFH氧化生成有荧光的DCF。因此,检测DCF的荧光强度值可代表细胞内ROS水平。细胞按2×105/孔接种于24孔板,24 h后分别加入102、103、104 particles/cell的Mtb-EVs,同时设阴性对照组。继续培养48 h收集细胞,离心洗涤后悬浮于终浓度为10 μmol/L的DCFH-DA 探针溶液中,37 ℃避光孵育30 min(期间颠倒混匀2~3次),无血清细胞培养基洗涤后流式检测。
1.2.8 ELISA法检测DC的细胞因子水平
用不同剂量 Mtb-EVs(102、103、104 particles/cell)处理DC,同时设阴性对照组(仅含PBS),分别在培养4 h、12 h、24 h、48 h离心收集上清,−80 ℃冻存。细胞因子IL-1β和IL-6的释放水平检测参照ELISA试剂盒说明书进行。
1.3 统计学方法
计量数据采用
$\bar x \pm s $ 表示。多组间比较采用单因素方差分析,两组间比较采用非配对双尾t检验,P<0.05为差异有统计学意义。2. 结果
2.1 透射电镜观察Mtb-EVs的形态
通过TEM对提取的Mtb-EVs进行观察,可见大小不等、球形双层膜囊泡样纳米结构,形态典型(图1)。
2.2 Mtb-EVs粒径分布与浓度
检测结果显示:Mtb-EVs粒径峰值98.5 nm,平均粒径110.2 nm,主要分布在68.4~155.7 nm之间,小于250 nm囊泡数量占总量98.39 %,颗粒浓度为3.5×1011 particles/mL (图2,表1)。
表 1 Mtb-EVs粒径分布区间累计百分比Table 1. Cumulative percentage of Mtb-EVs particle size distributionParticle size/nm Quantity (×106 particles/mL) Percentage Cumulative percentage 2.5-7.5 700 0.02% 0.02% 7.5-27.5 23000 0.66% 0.68% 27.5-47.5 65400 1.87% 2.55% 47.5-67.5 271900 7.77% 10.32% 67.5-87.5 868500 24.81% 35.13% 87.5-107.5 973300 27.81% 62.94% 107.5-127.5 562400 16.07% 79.01% 127.5-147.5 309100 8.83% 87.84% 147.5-167.5 163400 4.67% 92.51% 167.5-187.5 85400 2.44% 94.95% 187.5-207.5 60900 1.74% 96.69% 207.5-227.5 37900 1.08% 97.77% 227.5-247.5 21500 0.62% 98.39% 247.5-267.5 13400 0.38% 98.77% 267.5-287.5 11900 0.34% 99.11% 287.5-307.5 8200 0.23% 99.34% 307.5-327.5 5900 0.17% 99.51% 327.5-347.5 5900 0.17% 99.68% 347.5-367.5 3000 0.08% 99.77% 367.5-387.5 1500 0.04% 99.81% 387.5-407.5 2200 0.06% 99.87% 2.3 BCA法测定Mtb-EVs的蛋白浓度
根据试剂盒提供的标准品绘制标准曲线,通过待测样品OD值计算出超滤浓缩法提取的Mtb-EVs蛋白质量浓度为(0.88± 0.21) μg/μL。
2.4 DC形态学观察及纯度鉴定
小鼠骨髓细胞培养48 h后即可出现细胞聚集现象,随着培养时间的延长,集落逐渐变大,培养至第7天,大多数细胞悬浮,周围隐约可见刺样凸起,少数细胞疏松贴壁有细长伪足,呈“树突状”(图3A);收集细胞经流式细胞仪检测分析,结果显示扩增到的细胞纯度可达85%以上。透射电镜可见DC表面从胞体伸展出多个突起,呈放射状。起始部分较粗,反复分支发出大量的细长柔软的丝状伪足,形如树枝。胞浆均匀,细胞核较大,核膜清晰(图3B)。
图 3 培养第7天小鼠骨髓源DC形态及超微结构观察Figure 3. Morphology and ultrastructural characteristics of mouse bone marrow-derived DCs on day 7A: The cells gathered into and formed large colonies and the suspension cell colonies extended a large number of radial protrusions (indicated by the arrows) (×400); B: ultrastructural characteristics of DCs as observed by TEM.2.5 Mtb-EVs对DC存活率的影响
实验结果显示(图4):用不同剂量Mtb-EVs处理细胞24 h时,102、103和104 particles/cell Mtb-EVs对小鼠骨髓源DC存活率影响小,分别为(91.7±6.8)%、(86.1±7.8)%和(85.3±8.6)%。当Mtb-EVs剂量为105 particles/cell时, 细胞存活率为(72.0±6.6)%,与对照组相比,差异有统计学意义(P<0.05),呈现明显的细胞毒作用。因此,后续实验选用的Mtb-EVs剂量为102、103和104 particles/cell。
2.6 Mtb-EVs促进DC细胞ROS生成
DCFH-DA检测结果如图5所示,Mtb-EVs处理后,DC细胞内DCF荧光明显增强(P<0.05)。随着Mtb-EVs处理剂量增加,ROS水平显著升高,与Mtb-EVs剂量呈正相关(r=0.9694, P<0.05)。
2.7 Mtb-EVs促进DC细胞IL-1β和IL-6的分泌
结果如图6所示,Mtb-EVs以剂量依赖方式诱导DC产生IL-1β (r=0.9794, P<0.05)和IL-6 (r=0.9809, P<0.05)。随着Mtb-EVs刺激时间的延长,IL-1β的分泌量快速升高,104 particles/cell处理DC在4 h时产生的IL-1β的量明显高于其他剂量组,并在48 h达到高峰。但低剂量(102 particles/cell)处理DC产生IL-1β的量未见随时间延长而发生变化。各剂量Mtb-EVs组处理DC后,IL-6分泌量均在24 h达到峰值,之后开始下降,高剂量(104 particles/cell)处理DC中IL-6释放量下降速度更快。
3. 讨论
越来越多的证据表明,细菌EVs内含多种与菌细胞相关的脂质、核酸、蛋白及代谢物等生物活性成分,通过受体-配体相互作用、靶细胞内吞和/或吞噬作用内化等方式[8-9],广泛参与细胞间的信息传递。EVs的发现为多维度揭示细胞间通讯及疾病的发生发展机制提供了丰富的生物学信息。由于EVs体积小且密度低,高效便捷的分离纯化方法是研究EVs生物学功能及应用的基础。目前,研究者基于EVs的理化性质设计开发出多种分离纯化技术,如超速离心法、聚合物沉淀法、密度梯度离心法、尺寸排阻色谱法、免疫亲和法等[10]。但由于单一技术的局限性,无法同时实现提纯方法快速高效,并且纯度和生物活性又都符合实验需求的目标。因此,组合或联用技术已被越来越多地用于EVs的分离纯化。
本研究采用超滤浓缩法成功提取到Mtb-EVs,电镜观察可见形态典型的球状囊泡结构,直径约100 nm。NanoSight纳米颗粒追踪仪检测结果显示,Mtb-EVs粒径分布图曲线光滑,粒径集中,主要分布在68.4~155.7 nm之间。超滤浓缩法是超速离心技术与超滤法的结合,细菌离心后0.22 μm微孔滤膜过滤上清除菌,滤液经截留分子量100 kDa的超滤管浓缩,可去除大部分与EVs不相关的蛋白质,并最大程度上减少浓缩极化效应,克服了超速离心技术的缺陷与不足,是一种操作方便、简单易行的纯化细菌EVs的方法,具有广泛的应用价值。
DC是机体内重要的抗原提呈细胞,通过处理和提呈微生物抗原,启动特异性免疫应答,实现机体免疫防御。因此研究病原体及其相关成分——DC之间的相互作用,对于阐述病原体致病及机体免疫防御机制非常重要。实验中我们通过利用细胞的悬浮性能去除小鼠骨髓细胞中贴壁的单核细胞,应用rm GM-CSF联合rm IL-4诱导培养获取高纯度髓系DC。相差显微镜下观察到悬浮细胞聚集成团,并可见体积较大、外形不规则、表面大量刺状突起的典型DC形态特点。透射电镜下DC胞浆均匀,细胞核较大,核膜清晰,细胞表面大量放射状突起,反复分支发出细长的丝状伪足,提示DC极强的抗原摄取能力。
ROS作为细胞内线粒体氧化磷酸化副产物,在激活和调节免疫反应,如巨噬细胞迁移、淋巴细胞增殖活化以及炎症性应答中发挥重要作用[11-12]。近期研究发现纳米颗粒可诱导DC产生ROS,这一“应激”信号可能是调控DC成熟活化的重要因子[13]。本研究在探究Mtb-EVs对DC胞内ROS水平影响的实验中也有类似的发现,Mtb-EVs负载后,DC胞内DCF荧光明显增强。随着Mtb-EVs处理剂量增加,ROS水平显著升高,存在剂量效应关系。多项研究表明ROS-MAPK轴途径与机体炎症反应密切相关,ROS可通过调节下游通路蛋白MAPK磷酸化激活转录因子AP-1,进而上调IL-1β、TNF-α等炎症因子的表达,促进炎症反应[14-16]。本实验发现,负载Mtb-EVs后DC分泌产生IL-1β和IL-6增多,并且随着刺激时间的延长呈现规律的表达。 IL-6和IL-1β可有效调控这一阶段DC在体内的迁移、成熟和功能[17]。实验结果显示暴露于Mtb-EVs时,专职抗原提呈递细胞DC能识别EVs抗原,激活胞内级联信号,释放抗菌介质和炎症因子,促进天然免疫及获得性免疫应答的有效联结。虽然目前针对ROS在DC加工、处理纳米颗粒过程中作用的研究并不充分,但这一发现为深入阐述Mtb-EVs诱导机体产生特异性免疫应答机制提供了新视角。
综上,本研究优化了细菌EVs的提取纯化方法,为针对EVs的生物学活性研究,及以EVs为靶点开展疾病的诊疗奠定坚实的实验基础;并对Mtb-EVs的生物活性进行了初步探索,为后续进一步厘清Mtb感染及免疫应答机理提供更多线索。近年来,人们对细菌EVs的起源、组分分析、生物学功能、制备和表征手段等进行了深入的研究,但针对其形成和调控机理的探索尚不充分。下一步研究工作中,课题组将进一步探讨Mtb-EVs产生机制、异质性和功能多样性,期待能为疾病防控提供新视角。
* * *
利益冲突 所有作者均声明不存在利益冲突
-
图 3 培养第7天小鼠骨髓源DC形态及超微结构观察
Figure 3. Morphology and ultrastructural characteristics of mouse bone marrow-derived DCs on day 7
A: The cells gathered into and formed large colonies and the suspension cell colonies extended a large number of radial protrusions (indicated by the arrows) (×400); B: ultrastructural characteristics of DCs as observed by TEM.
表 1 Mtb-EVs粒径分布区间累计百分比
Table 1 Cumulative percentage of Mtb-EVs particle size distribution
Particle size/nm Quantity (×106 particles/mL) Percentage Cumulative percentage 2.5-7.5 700 0.02% 0.02% 7.5-27.5 23000 0.66% 0.68% 27.5-47.5 65400 1.87% 2.55% 47.5-67.5 271900 7.77% 10.32% 67.5-87.5 868500 24.81% 35.13% 87.5-107.5 973300 27.81% 62.94% 107.5-127.5 562400 16.07% 79.01% 127.5-147.5 309100 8.83% 87.84% 147.5-167.5 163400 4.67% 92.51% 167.5-187.5 85400 2.44% 94.95% 187.5-207.5 60900 1.74% 96.69% 207.5-227.5 37900 1.08% 97.77% 227.5-247.5 21500 0.62% 98.39% 247.5-267.5 13400 0.38% 98.77% 267.5-287.5 11900 0.34% 99.11% 287.5-307.5 8200 0.23% 99.34% 307.5-327.5 5900 0.17% 99.51% 327.5-347.5 5900 0.17% 99.68% 347.5-367.5 3000 0.08% 99.77% 367.5-387.5 1500 0.04% 99.81% 387.5-407.5 2200 0.06% 99.87% -
[1] 国家卫生健康委疾病预防控制局. 2019年全国法定传染病疫情概况. 中国病毒病杂志,2020,10(4): 245. [2] ÑAHUI PALOMINO R A, VANPOUILLE C, COSTANTINI P E, et al. Microbiota-host communications: Bacterial extracellular vesicles as a common language. PLoS Pathog,2021,17(5): e1009508. DOI: 10.1371/journal.ppat.1009508
[3] BROWN L, WOLF J M, PRADOS-ROSALES R, et al. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat REVs Microbiol,2015,13(10): 620–630. DOI: 10.1038/nrmicro3480
[4] LEE E Y, CHOI D Y, KIM D K, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylo- coccus aureus derived membrane vesicles. Proteomics,2009,9(24): 5425–5436. DOI: 10.1002/pmic.200900338
[5] BRIAUD P, CARROLL R K. Extracellular vesicle biogenesis and functions in Gram-positive bacteria. Infect Immun,2020,88(12): e00433–20. DOI: 10.1128/IAI.00433-20
[6] GIORDANA N P, CIAN M B, DALEBROUX Z D. Outer membrane lipid secretion and the innate immune response to Gram-negative bacteria. Infect Immun,2020,88(7): e00920–19. DOI: 10.1128/IAI.00920-19
[7] INABA K, INABA M, ROMANI N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony stimulating factor. J Exp Med,1992,176(6): 1693–1702. DOI: 10.1084/jem.176.6.1693
[8] MULCAHY L A, PINK R C,CARTER D R. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles,2014,3(24641): 1–14. DOI: 10.3402/jev.v3.24641
[9] LORINCZ Á M, SZEIFERT V, BARTOS B, et al. Different calcium and Src family kinase signaling in Mac-1 dependent phagocytosis and extracellular vesicle generation. Front Immunol,2019,17(2942): 1–11. DOI: 10.3389/fimmu.2019.02942
[10] 白佳鑫, 任盼, 黄嘉兴, 等. 细菌囊泡多样性的研究进展. 生物科学进展,2022,53(4): 299–303. [11] HERB M, SCHRAMM M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants (Basel),2021,10(2): 313. DOI: 10.3390/antiox10020313
[12] PINEGIN B, VOROBJEVA N, PASHENKOV M, et al. The role of mitochondrial ROS in antibacterial immunity. J Cell Physiol,2018,233(5): 3745–3754. DOI: 10.1002/jcp.26117
[13] NI J, SONG J, WANG B, et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother,2020,126: 110046. DOI: 10.1016/j.biopha.2020.110046
[14] GÖTZ A, TY M C, RODRIGUEZ A. Oxidative stress enhances dendritic cell responses to Plasmodium falciparum. Immunohorizons,2019,3(11): 511–518. DOI: 10.4049/immunohorizons.1900076
[15] KIM Y H, LEE S H. Mitochondrial reactive oxygen species regulate fungal protease-induced inflammatory responses. Toxicology,2017,378: 86–94. DOI: 10.1016/j.tox.2017.01.008
[16] KONG L, BARBER T, ALDINGER J, et al. ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. Environ Toxicol,2022,37(2): 237–244. DOI: 10.1002/tox.23393
[17] BAZAN S B, BARBARA W R, SCHMITT M J, et al. Maturation and cytokine pattern of human dendritic cells in response to different yeasts. Med Microbiol Immunol,2018,207(1): 75–81. DOI: 10.1007/s00430-017-0528-8
-
期刊类型引用(2)
1. 胡洋,吕传意,代鑫,王宇航,赵芮竹,冯嘉轩,娄石磊,阎慧,孙聪. 黄芩素通过Nrf-2/HO-1信号通路改善脓毒血症小鼠肾损伤. 中国兽医学报. 2025(01): 121-128 . 百度学术
2. 翟达,王文婷,柳琳,张利军,白重阳,翟鸿烨. 血清IgE、IgA及MMP-13水平在复发性过敏性紫癜患儿中的表达及临床意义. 保健医学研究与实践. 2024(05): 106-110 . 百度学术
其他类型引用(1)

开放获取 本文遵循知识共享署名—非商业性使用4.0国际许可协议(CC BY-NC 4.0),允许第三方对本刊发表的论文自由共享(即在任何媒介以任何形式复制、发行原文)、演绎(即修改、转换或以原文为基础进行创作),必须给出适当的署名,提供指向本文许可协议的链接,同时标明是否对原文作了修改;不得将本文用于商业目的。CC BY-NC 4.0许可协议详情请访问 https://creativecommons.org/licenses/by-nc/4.0