-
摘要:目的 探讨子痫前期(preeclampsia, PE)病理过程中维生素D对母胎界面局部肾素血管紧张素系统(renin-angiotensin system, RAS)的调节作用及机制。方法 用RT-PCR和Western blot检测正常妊娠和重症PE胎盘蜕膜中肾素mRNA和蛋白的表达;体外使用活性与非活性维生素D处理正常蜕膜组织48 h,用RT-PCR和Western blot检测肾素和维生素D去活化酶CYP24A1的表达;分离纯化并用细胞免疫化学染色鉴定正常蜕膜基质细胞和腺上皮细胞,用RT-PCR分别检测两种细胞以及蜕膜组织中维生素D相关分子mRNA的表达;在体外使用活性与非活性维生素D分别处理两种细胞,用RT-PCR和Western blot检测肾素和维生素D去活化酶CYP24A1的表达;使用PKA通路激动剂forskolin或抑制剂H89处理蜕膜腺上皮细胞,探讨蛋白激酶A(protein kinase A, PKA)通路与维生素D在肾素表达调控过程中的相互作用。结果 肾素的mRNA和蛋白质水平在重症PE胎盘蜕膜中的表达较正常对照升高(P<0.05);维生素D处理可使正常蜕膜组织中肾素表达下调(P<0.05),CYP24A1表达增加(P<0.001);从蜕膜组织中成功分离蜕膜基质细胞和腺上皮细胞,相比于蜕膜基质细胞,腺上皮细胞内维生素D相关分子mRNA水平与蜕膜组织更相似;活性或非活性维生素D处理使腺上皮细胞肾素表达抑制(P<0.05),但是蜕膜基质细胞中肾素表达不受影响,两种维生素D处理使两类细胞中的CYP24A1均上调(P<0.001);活性维生素D可以显著抑制forskolin对肾素的上调作用,并可与H89协同抑制肾素表达。结论 PE患者胎盘蜕膜肾素表达上调,母胎界面局部RAS系统的活化可能参与PE的发病;维生素D可以特异性地在人蜕膜腺上皮细胞中通过与PKA通路竞争下调肾素表达,补充维生素D可能对PE的临床干预具有潜在价值。Abstract:Objective To investigate the regulatory effect and mechanism of vitamin D on the local renin-angiotensin system at maternal-fetal interface in the pathological process of preeclampsia (PE).Methods The mRNA and protein expression of renin in decidua of normal pregnancy and PE placentas was determined by RT-PCR and Western blot. Normal decidual tissues were treated with active and inactive vitamin D for 48 h in vitro and the expressions of renin and vitamin D deactivating enzyme CYP24A1 were determined by RT-PCR and Western blot. Normal decidual stromal cells and glandular epithelial cells were isolated and purified, and identified by immunocytochemical staining. RT-PCR was used to examine the mRNA of vdr, cyp27b1, cyp24a1, and renin in the two types of cells and in decidual tissue, and the mRNA products were subjected to gel electrophoresis. These two cell types were treated with active and inactive vitamin D in vitro and the expressions of renin and vitamin D deactivating enzyme CYP24A1 were determined by RT-PCR and Western blot. Decidual gland epithelial cells were treated with protein kinase A (PKA) activator forskolin or inhibitor H89 to explore the interaction between PKA pathway and vitamin D in the regulation of renin expression.Results The expression of renin in PE decidua was significantly higher than that of normal control at transcriptional and translational levels (P<0.05). Vitamin D treatment could significantly down-regulate the expression of renin in normal decidua tissues (P<0.05), while it significantly up-regulated CYP24A1 expression (P<0.001). Decidual stromal cells and gland epithelial cells were successfully isolated from decidual tissue. Compared with that in decidual stromal cells, the mRNA level of vitamin D-related molecules in gland epithelial cells was more similar to that in decidual tissue. Active or inactive vitamin D treatment significantly inhibited the expression of renin in glandular epithelial cells (P<0.05), but the expression of renin in decidual stromal cells was not affected. However, the treatment of active or inactive vitamin D in these two kinds of cells significantly increased the expression of CYP24A1 (P<0.001). Active vitamin D could significantly inhibit the upregulation of renin by PKA agonist forskolin, and could inhibit the expression of renin through synergy with PKA inhibitor H89.Conclusion The expression of renin in placental decidua is up-regulated in patients with PE, and the activation of local renin-angiotensin system at the maternal-fetal interface may be involved in the pathogenesis of PE. Vitamin D can specifically down-regulate renin expression in human decidual gland epithelial cells by competing with the PKA pathway. Vitamin D supplementation may have potential value for clinical intervention of PE.
-
Keywords:
- Vitamin D /
- Preeclampsia /
- Renin /
- Decidua
-
子痫前期(preeclampsia, PE)是一种多系统妊娠疾病,在孕妇中主要表现为高血压与蛋白尿。PE全球患病率高达5%~7%[1],国内报道患病率在1%~10%不等[2],可造成胎儿生长受限、流产和死产等不良妊娠结局。
近年发表的系统回顾研究认为妊娠期血浆维生素D3低水平与PE风险呈正相关,补充维生素D可能对PE具有预防作用[3]。维生素D3主要通过饮食摄入,也可在表皮内由7-脱氢胆固醇在紫外线照射下内源性合成,在肝脏和肾脏中逐步转化,最终形成其活性形式——1,25(OH)2D3。维生素D主要通过结合核受体(vitamin D receptor, VDR),靶向调节基因转录激活与抑制[4]。1,25(OH)2D3的增加可以上调24-羟化酶(CYP24A1)的表达[5-6]。该酶可使活性维生素D转化为非活性的1,24(OH)2D3。维生素D在胎盘滋养层中具有抗炎和抗氧化应激特性,以及调节与胎血管生成相关的基因的转录[7]。维生素D缺乏能激活肾素-血管紧张素系统(renin-angiotensin system, RAS)并诱导内皮功能障碍和促进高血压发生[8-9]。
目前,维生素D缺乏与PE关系的研究多局限于临床分析和流行病学调查。PE患者血中肾素、血管紧张素Ⅱ和醛固酮水平的变化存在争议[10-11],维生素D在PE胎盘形成过程中的确切作用仍未确定[12]。因此本研究就PE病理过程中维生素D对母胎界面局部RAS的调节作用进行探讨。
1. 材料和方法
1.1 临床样本的获取
人正常妊娠和重症PE胎盘蜕膜样本取自北京大学第一医院妇产科。正常妊娠组和重症PE组各取14份胎盘蜕膜。本研究通过了中国科学院动物研究所和北京大学第一医院伦理委员会的审核(伦理审批号:30530760),并在收集样本时与孕妇签署知情同意书。正常妊娠胎盘蜕膜来源于孕前血压正常,妊娠期内没有出现高血压和蛋白尿,没有其他器质性病变、慢性疾病和传染性疾病的孕妇,胎儿无遗传疾病。重症PE孕妇的诊断标准:患者孕前无高血压病史,妊娠20周后收缩压≥160 mmHg(1 mmHg=0.133 kPa)或舒张压≥110 mmHg,并伴严重尿蛋白,伴血小板减少、肝肾功能损害、肺水肿以及新发中枢神经系统异常等。双胎/多胎妊娠、人工辅助生殖妊娠、胎儿染色体异常或先天发育异常样本排除于本研究。
1.2 组织和细胞培养
1.2.1 人蜕膜组织培养
正常妊娠6~8周的早孕蜕膜在无菌条件下以PBS漂洗后置入F12/DMEM(FD)(F12∶DMEM=1∶1; GIBCO)。组织剪成小块,用FD悬起后低速离心。将组织块分散放置在预先涂好Ⅰ型胶原(cell matrix type Ⅰ-A,生化研究所,Osaka, Japan)的细胞培养皿中,待蜕膜组织贴壁牢固后加入含10%FBS、10−7 mol/L雌激素和10−7 mol/L孕激素的DMEM培养基,于37 ℃、体积分数为5%CO2条件下培养。
1.2.2 人蜕膜基质细胞和腺上皮细胞的原代培养及鉴定
正常妊娠的早孕蜕膜剪碎,剪好的组织用DMEM重悬并离心2次,置于消化液(组织∶DMEM∶胶原酶的体积比=2∶2∶1)中在37 ℃摇床中消化1 h。消化产物400 r/min离心2 min。取上清作为第一阶段消化产物,而管底沉淀按照前面的方法进一步消化。第二阶段的消化产物离心后用DMEM重悬并与第一阶段消化产物混合。重悬的细胞依次通过不同孔径的筛网,400目筛网主要分离蜕膜基质细胞,300目筛网粗分腺上皮细胞。细胞可用上述含激素的10%FBS DMEM重悬,接种于Ⅰ型胶原包被的培养皿中。
采用细胞免疫化学染色鉴定人蜕膜基质细胞和腺上皮细胞。蜕膜基质细胞和腺上皮细胞用体积分数为4%多聚甲醛固定10 min。PBS冲洗后用0.3%Triton破膜15 min,用1%BSA或血清和IgG室温封闭10 min。加入CK-7(1∶200, Abcam, ab68459)〔腺上皮细胞(epi)的特异性标志分子〕、Vimentin(1∶200, Abcam, ab8978)〔蜕膜基质细胞(str)的特异性标志分子〕一抗4 ℃过夜孵育,加入即用型二抗(中杉金桥),室温孵育30 min,DAB显色3~5 min,中止反应。苏木精复染4 s,流水冲洗后封片。最后进行显微照相。
1.3 胎盘蜕膜组织中肾素的表达检测
正常妊娠组和重症PE组各取14份胎盘蜕膜组织,分别采用RT-PCR和Western blot检测肾素mRNA和蛋白的表达水平,具体方法见1.5和1.6。
1.4 维生素D对胎盘蜕膜组织/细胞中肾素和cyp24a1/CYP24A1表达的影响
1.4.1 胎盘蜕膜组织
取14例正常妊娠早孕蜕膜组织体外培养,对来源于同一孕妇的组织样本分别用100 nmol/L 1,25(OH)2D3(Sigma, D1530)或100 nmol/L 25(OH)D3(Sigma, 679102)处理48 h,对照组加入等体积的乙醇溶剂处理。分别采用RT-PCR和Western blot检测肾素mRNA和蛋白、cyp24a1 mRNA和CYP24A1蛋白的表达水平,具体方法见1.5和1.6。
1.4.2 胎盘蜕膜细胞
将原代蜕膜基质细胞和腺上皮细胞各分成3组(每组n=3),分别用100 nmol/L 1,25(OH)2D3或100 nmol/L 25(OH)D3处理48 h,对照组加入等体积的乙醇溶剂处理。分别采用RT-PCR和Western blot检测肾素mRNA和蛋白、cyp24a1 mRNA和CYP24A1蛋白的表达水平,具体方法见1.5和1.6。
原代蜕膜腺上皮细胞分别加入100 nmol/L 1,25(OH)2D3、1 μmol/L蛋白激酶A(protein kinase A, PKA)通路激动剂forskolin(Sigma, F3917)、1 μmol/L PKA通路拮抗剂H89(MedChemExpress, HY-15979A)、100 nmol/L 1,25(OH)2D3+1 μmol/L forskolin以及100 nmol/L 1,25(OH)2D3+1 μmol/L H89处理48 h,对照组加入等体积的乙醇溶剂处理。分别采用RT-PCR和Western blot检测肾素mRNA和蛋白、cyp24a1 mRNA和CYP24A1蛋白的表达水平,具体方法见1.5和1.6。
1.5 RT-PCR检测肾素、cyp24a1、cyp27b1和vdr的表达水平
将组织和细胞收集后用Trizol试剂(Invitrogen)提取总RNA,用反转录试剂盒(Promega)定量合成cDNA。以GAPDH为内参进行RT-PCR检测。引物序列(英潍捷基): renin上游引物:5′-TCTTCGATGCTTCGGATTCC-3′,下游引物:5′-GTGATTCCACCCACGGTGAT-3′; cyp24a1上游引物:5′-GAGACTGGTGACATCTACGGCGTACA-3′,下游引物:5′-CCATAAAATCGGCCAAGACCTCATTG-3′;cyp27b1上游引物:5′-TTGGCAAGCGCAGCTGTAT-3′,下游引物:5′-TGTGTTAGGATCTGGGCCAAA-3′;vdr上游引物:5′-CTTCAGGCGAAGCATGAAGC-3′;下游引物:5′-CCTTCATCATGCCGATGTCC-3′;GAPDH上游引物:5′-GAAGGTGAAGGTCGGAGTC-3′,下游引物:5′-GAAGATGGTGATGGGATTTC-3′;renin、cyp27b1、vdr和GAPDH扩增条件:95 ℃ 30 s预变性,95 ℃ 5 s变性,60 ℃ 30 s退火延伸,40个循环。cyp24a1扩增条件:95 ℃ 30 s预变性,95 ℃ 5 s变性,63 ℃ 30 s退火,72 ℃ 30 s延伸,40个循环。每个样品基因mRNA相对表达水平用2−ΔΔCt方法计算。扩增产物进行琼脂糖凝胶电泳检测。
1.6 Western blot检测肾素和CYP24A1的表达水平
用RIPA裂解液(北京康为世纪生物科技)提取胎盘蜕膜组织或原代细胞的总蛋白,并用BCA试剂盒(武汉博士德)检测总蛋白浓度。经SDS-PAGE电泳分离蛋白后,将蛋白质在转膜液中转至NC膜,并用5%脱脂牛奶室温封闭蛋白2 h,再加入RENIN(1∶500, Santa Cruz)和GAPDH(1∶10000, Ambion)特异性抗体4 ℃孵育过夜,辣根过氧化物酶标记的二抗(1∶10000~1∶20000; Promega)室温孵育2 h,加入ECL试剂(Pierce, Rockford IL)显色3~4 min,X射线胶片(Kodak)曝光。条带灰度扫描,并用ImageJ软件计算灰度值。GAPDH结果为内参,计算特异条带的相对灰度值。
1.7 统计学方法
所有实验均重复3次以上。组间比较采用t检验及ANOVA分析,P<0.05为差异有统计学意义。
2. 结果
2.1 肾素在重症PE胎盘中的表达增加
与正常妊娠相比,重症PE胎盘蜕膜组织中肾素mRNA和蛋白水平分别升高了12倍和3.2倍(P<0.05)。见图1。
2.2 维生素D下调体外培养蜕膜组织中肾素的表达
人早孕蜕膜组织在维生素D的刺激下,维生素D响应的标志性分子cyp24a1 mRNA水平增加(P<0.001, 图2A),且相比于25(OH)D3,1,25(OH)2D3诱导cyp24a1 mRNA表达更强(P<0.05),提示蜕膜组织对维生素D刺激存在良好的反应性。非活性或活性形式的维生素D处理均可显著下调蜕膜中的肾素表达,1,25(OH)2D3处理使蜕膜组织内肾素的mRNA和蛋白水平与对照组相比分别下调37%和60%(P<0.05)(图2B、2C)。与25(OH)D3处理组相比,1,25(OH)2D3处理组肾素mRNA表达无明显差异,但蛋白表达量下降(P<0.05)。
图 2 维生素D在体外培养蜕膜组织中对肾素表达水平的调节Figure 2. Effects of vitamin D on the expression of renin in in vitro decidual tissue cultureA, B: Real-time PCR analysis depicting the mRNA expression levels of renin and cyp24a1 in the presence of 100 nmol/L 25(OH)D3 or 1,25(OH)2D3 in in vitro cultured decidual tissues; C: Western blot analysis showing the protein levels of RENIN present in in vitro decidual tissue culture treated with 100 nmol/L 25(OH)D3 or 1,25(OH)2D3; a: Etoh group; b: 25(OH)D3 group; c: 1,25(OH)2D3 group. #P<0.05, vs. b; ***P<0.001, vs. a. n=3 in each group.2.3 人早孕蜕膜基质细胞和腺上皮细胞的分离与鉴定
从正常早孕蜕膜组织中分离的蜕膜基质细胞绝大部分Vimentin染色呈阳性(图3C),CK-7阳性细胞极少(图3B);而腺上皮细胞99%以上呈CK-7染色阳性(图3E),几乎未见Vimentin染色信号(图3F)。说明本研究分离的蜕膜基质细胞和腺上皮细胞纯度较高。蜕膜基质细胞和腺上皮细胞均存在cyp24a1、cyp27b1、vdr和renin的表达,而在腺上皮细胞中这些分子的相对表达量与蜕膜组织具有更高的相似性(图3G)。
图 3 原代分离的蜕膜基质细胞和腺上皮细胞的鉴定Figure 3. Identification of primary cultured decidua stromal and gland epithelial cellsA-F: Immunocytochemical demonstration of the purity of human decidua stromal and gland epithelial cells in culture. Vimentin staining served as positive controls for isolated stromal cells, and CK-7 positive cells were identified as gland epithelial cells; IgG was used as negative control (A, D). Scale bar=50 μm; G: The differential expression of cyp24al, cyp27b1, vdr and renin in primary cultured decidual stroma and gland epithelial cells. Decidual tissues are used as a positive control. de: Decidual tissues; str: Decidua stromal cell; epi: Gland epithelial cell.2.4 维生素D仅在蜕膜腺上皮细胞中对肾素表达有下调作用
维生素D处理可显著诱导蜕膜基质细胞(图4A)和腺上皮细胞(图4B)内cyp24a1 mRNA产生(P<0.001),表明两种细胞对维生素D刺激都有良好的反应性。但是蜕膜基质细胞中肾素表达不受25(OH)D3或1,25(OH)2D3处理的影响(图4A、4C);而在腺上皮细胞中,两种维生素D处理均可显著抑制肾素表达,两实验组间肾素表达差异无统计学意义,其中与对照组相比,1,25(OH)2D3处理使肾素mRNA和蛋白水平分别下调50%和49%(图4B、4D)。
图 4 维生素D在原代蜕膜基质细胞或原代蜕膜腺上皮细胞中对肾素表达的影响Figure 4. Effect of vitamin D on renin expression in primary decidua stromal cells or primary deciduous glandular epithelial cellsA, B: Real-time PCR analysis showing the mRNA levels of renin in the presence of 25(OH)D3 or 1,25(OH)2D3 in primary cultured decidual stromal cells (A) and gland epithelial cells (B); C, D: Western blot analysis depicting the protein levels of RENIN present in the primary cultured decidual stromal cells (C) and gland epithelial cells (D) in response to 25(OH)D3 or 1,25(OH)2D3 treatment respectively; a: Etoh group; b: 25(OH)D3 group; c: 1,25(OH)2D3 group. *P<0.05, ***P<0.001, vs. a. n=3 in each group.2.5 维生素D通过与PKA通路竞争抑制蜕膜腺上皮细胞中肾素的表达分析
蜕膜腺上皮细胞经PKA通路激动剂forskolin处理后,肾素mRNA和蛋白水平分别比对照组升高1.5倍(图5A)和1.35倍(图5B),而用PKA通路拮抗剂H89处理则使肾素mRNA和蛋白下降了49%(图5A)和40%(图5B)。1,25(OH)2D3可以显著拮抗forskolin对肾素表达的上调作用(P<0.05),使肾素表达量几乎与对照组相当;而1,25(OH)2D3与H89则可协同抑制肾素的表达(P<0.05)(图5)。
图 5 1,25(OH)2D3通过与PKA 通路竞争来抑制肾素在蜕膜腺上皮细胞中的表达Figure 5. 1,25(OH)2D3 down-regulates the expression of renin in primary cultured decidual epithelial cells by competing with the PKA pathwayPrimary cultured epithelial cells were treated with ethanol (a), 1,25(OH)2D3 (b), forskolin (c), H89 (d), forskolin and 1,25(OH)2D3 (e), or H89 and 1,25(OH)2D3 (f) as indicated for 48 h. Total cellular mRNA and protein were isolated, and the expression levels of rennin/RENIN were determined by real-time PCR (A) and Western blot (B). * P<0.05, vs. a group; # P<0.05, vs. c group; △ P<0.05, vs. d group. n=3 in each group.3. 讨论
PE病因复杂,每年在全世界造成超过70000位产妇和50万名胎儿死亡[13],但目前PE的有效预测、预防及治疗手段却十分有限。目前的研究普遍认为胎盘发育异常在PE病理机制中占据中心地位。两阶段理论是目前PE发病的重要假说:第一阶段滋养细胞浸润改造母体螺旋动脉不足导致胎盘绒毛发育不良,胎盘局部炎症反应激活;第二阶段母体RAS系统激活,母胎界面产生的大量炎症因子诱导母体全身小动脉炎症[1]。
本研究发现与正常妊娠相比,PE患者蜕膜的肾素表达量更高。与既往研究发现PE母胎界面上存在RAS过度活化的结论一致[14]。鉴于维生素D不足与PE的发生有关[15],1,25(OH)2D3可显著抑制胎盘滋养层细胞中的环氧合酶-2活性,减缓胎盘炎症反应,可能有助于缓解PE[16]。本研究推测PE蜕膜组织中高水平的肾素可能与系统性维生素D缺乏有关,补充维生素D可能有助于缓解母胎界面RAS的激活。为了探讨PE母胎界面病理结局的具体分子机制,本研究主要使用早孕期正常蜕膜组织进行相关实验,检测不同类型的蜕膜细胞对非活性25(OH)D3以及具有生物活性的1,25(OH)2D3的反应性,以期模拟PE蜕膜病理变化过程。
首先,本研究发现无论是1,25(OH)2D3还是25(OH)D3都可以显著抑制正常人早孕蜕膜组织中肾素的mRNA和蛋白质的表达。由于母胎界面多种细胞类型均可表达VDR及维生素D活化的关键分子[17],母胎界面局部维生素D的浓度及活化程度在PE患者中是否存在异常还有待深入研究。为了进一步明确蜕膜组织内哪些类型的细胞响应维生素D并调控肾素表达,本研究从正常早孕蜕膜组织中分别分离纯化了蜕膜基质细胞和腺上皮细胞,并通过免疫细胞化学染色对细胞类型进行鉴定。通过检测维生素D代谢相关分子和肾素的mRNA水平,结果发现与蜕膜基质细胞相比,蜕膜腺上皮细胞与蜕膜组织的维生素D代谢响应系统相关分子相对表达量更为相似。后续实验结果也发现维生素D对肾素的显著抑制作用仅存在于蜕膜腺上皮细胞中,而蜕膜基质细胞中并不存在此种调控。这种反应性的差异可能源于维生素D代谢系统在不同细胞类型中的异质性。
1,25(OH)2D3与VDR结合后可与多种转录因子协同发挥转录调控作用[17-18]。本研究通过基因启动子区域查询(https://www.ncbi.nlm.nih.gov/)及查阅相关文献并未发现肾素基因的转录启动子区域存在维生素D响应元件,所以猜测维生素D可能通过间接作用调节肾素表达。
已有的研究表明肾素的表达受cAMP反应元件结合蛋白(cyclic-AMP response binding protein, CREB)调控,PKA通路活化时,cAMP结合PKA的调节亚单位以释放催化亚单位,催化亚单位进入细胞核并磷酸化CREB,导致共活化剂CBP/p300的募集从而促进肾素基因表达[19]。而在肾上皮细胞中已发现1,25(OH)2D3可以抑制肾素的表达[20]。YUAN等[21]发现在肾上皮细胞内1,25(OH)2D3存在时,连接着1,25(OH)2D3的VDR与CREB结合,导致CRE-CREB-CBP/p300复合物的形成受阻,造成肾素基因表达减少。基于该理论,本研究通过使用PKA通路激动剂或拮抗剂处理蜕膜腺上皮细胞,使细胞内PKA上游关键分子cAMP活性上调或下降,导致肾素表达被显著激活或抑制(P<0.05)。同时加入维生素D可以阻断forskolin诱导的PKA通路激活从而抑制蜕膜中肾素的表达,并可协同PKA通路抑制剂H89更强地下调肾素。由此证明,在母胎界面上,蜕膜腺上皮细胞肾素的分泌受维生素D的调节,这种调节作用通过影响PKA通路的活化程度实现。而维生素D拮抗PKA通路活性的具体作用机制是否与肾上皮细胞内的研究结果一致仍有待深入探索。另外,根据现有的实验结果,可以推测用维生素D处理重度PE蜕膜组织可能也会导致其RAS系统的激活减弱,但尚需设计实验加以证实。
综上,母胎界面局部肾素表达异常升高,引发RAS系统的过度活化,可能是PE胎盘炎症激活的原因之一;机体维生素D水平缺乏或母胎界面上维生素D代谢与功能障碍可能通过PKA通路激活RAS促进PE的发生或发展。维生素D对PE干预的临床效果需要更多基于大样本的临床研究进一步明确。
* * *
利益冲突 所有作者均声明不存在利益冲突
-
图 2 维生素D在体外培养蜕膜组织中对肾素表达水平的调节
Figure 2. Effects of vitamin D on the expression of renin in in vitro decidual tissue culture
A, B: Real-time PCR analysis depicting the mRNA expression levels of renin and cyp24a1 in the presence of 100 nmol/L 25(OH)D3 or 1,25(OH)2D3 in in vitro cultured decidual tissues; C: Western blot analysis showing the protein levels of RENIN present in in vitro decidual tissue culture treated with 100 nmol/L 25(OH)D3 or 1,25(OH)2D3; a: Etoh group; b: 25(OH)D3 group; c: 1,25(OH)2D3 group. #P<0.05, vs. b; ***P<0.001, vs. a. n=3 in each group.
图 3 原代分离的蜕膜基质细胞和腺上皮细胞的鉴定
Figure 3. Identification of primary cultured decidua stromal and gland epithelial cells
A-F: Immunocytochemical demonstration of the purity of human decidua stromal and gland epithelial cells in culture. Vimentin staining served as positive controls for isolated stromal cells, and CK-7 positive cells were identified as gland epithelial cells; IgG was used as negative control (A, D). Scale bar=50 μm; G: The differential expression of cyp24al, cyp27b1, vdr and renin in primary cultured decidual stroma and gland epithelial cells. Decidual tissues are used as a positive control. de: Decidual tissues; str: Decidua stromal cell; epi: Gland epithelial cell.
图 4 维生素D在原代蜕膜基质细胞或原代蜕膜腺上皮细胞中对肾素表达的影响
Figure 4. Effect of vitamin D on renin expression in primary decidua stromal cells or primary deciduous glandular epithelial cells
A, B: Real-time PCR analysis showing the mRNA levels of renin in the presence of 25(OH)D3 or 1,25(OH)2D3 in primary cultured decidual stromal cells (A) and gland epithelial cells (B); C, D: Western blot analysis depicting the protein levels of RENIN present in the primary cultured decidual stromal cells (C) and gland epithelial cells (D) in response to 25(OH)D3 or 1,25(OH)2D3 treatment respectively; a: Etoh group; b: 25(OH)D3 group; c: 1,25(OH)2D3 group. *P<0.05, ***P<0.001, vs. a. n=3 in each group.
图 5 1,25(OH)2D3通过与PKA 通路竞争来抑制肾素在蜕膜腺上皮细胞中的表达
Figure 5. 1,25(OH)2D3 down-regulates the expression of renin in primary cultured decidual epithelial cells by competing with the PKA pathway
Primary cultured epithelial cells were treated with ethanol (a), 1,25(OH)2D3 (b), forskolin (c), H89 (d), forskolin and 1,25(OH)2D3 (e), or H89 and 1,25(OH)2D3 (f) as indicated for 48 h. Total cellular mRNA and protein were isolated, and the expression levels of rennin/RENIN were determined by real-time PCR (A) and Western blot (B). * P<0.05, vs. a group; # P<0.05, vs. c group; △ P<0.05, vs. d group. n=3 in each group.
-
[1] RANA S, LEMOINE E, GRANGER J P, et al. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res,2019,124(7): 1094–1112. DOI: 10.1161/CIRCRESAHA.118.313276
[2] 乐怡平, 林建华. 子痫前期流行病学进展. 中华产科急救电子杂志,2013,2(3): 159–163. DOI: 10.3877/cma.j.issn.2095-3259.2013.03.002 [3] ABDELRAHIEM S K, AHMED A B A, SHARIF M E, et al. Association between maternal serum 25-hydroxyvitamin D concentrations and the risk of pre-eclampsia in central Sudan: A case-control study. Trans R Soc Trop Med Hyg,2022,116(5): 487–491. DOI: 10.1093/trstmh/trab163
[4] JIN C H, PIKE J W. Human vitamin D receptor-dependent transactivation in Saccharomyces cerevisiae requires retinoid X receptor. Mol Endocrinol,1996,10(2): 196–205. DOI: 10.1210/mend.10.2.8825559
[5] CHRISTAKOS S, DHAWAN P, VERSTUYF A, et al. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev,2016,96(1): 365–408. DOI: 10.1152/physrev.00014.2015
[6] SAPONARO F, SABA A, ZUCCHI R. An Update on vitamin D metabolism. Int J Mol Sci,2020,21(18): 6573. DOI: 10.3390/ijms21186573
[7] KARRAS S N, WAGNER C L, CASTRACANE V D. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes. Metabolism,2018,86: 112–123. DOI: 10.1016/j.metabol.2017.10.001
[8] AJABSHIR S, ASIF A, NAYER A. The effects of vitamin D on the renin-angiotensin system. J Nephropathol,2014,3(2): 41–43. DOI: 10.12860/jnp.2014.09
[9] DE LA GUIA-GALIPIENSO F, MARTINEZ-FERRAN M, VALLECILLO N, et al. Vitamin D and cardiovascular health. Clin Nutr,2021,40(5): 2946–2957. DOI: 10.1016/j.clnu.2020.12.025
[10] 韩慧娟, 李晓冬. 子宫胎盘单位的肾素-血管紧张素系统与子痫前期. 国际生殖健康/计划生育杂志,2012,31(2): 145–148. DOI: 10.3969/j.issn.1674-1889.2012.02.017 [11] ZITOUNI H, RAGUEMA N, GANNOUN M B A, et al. Impact of obesity on the association of active renin and plasma aldosterone concentrations, and aldosterone-to-renin ratio with preeclampsia. Pregnancy Hypertens,2018,14: 139–144. DOI: 10.1016/j.preghy.2018.09.007
[12] PONIEDZIALEK-CZAJKOWSKA E, MIERZYNSKI R. Could vitamin D be effective in prevention of preeclampsia? Nutrients,2021,13(11): 3854. DOI: 10.3390/nu13113854
[13] HOGAN M C, FOREMAN K J, NAGHAVI M, et al. Maternal mortality for 181 countries, 1980–2008: A systematic analysis of progress towards Millennium Development Goal 5. Lancet,2010,375(9726): 1609–1623. DOI: 10.1016/S0140-6736(10)60518-1
[14] ANTON L, MERRILL D C, NEVES L A, et al. Activation of local chorionic villi angiotensin Ⅱ levels but not angiotensin (1-7) in preeclampsia. Hypertension,2008,51(4): 1066–1072. DOI: 10.1161/HYPERTENSIONAHA.107.103861
[15] AGHAJAFARI F, NAGULESAPILLAI T, RONKSLEY P E, et al. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies. BMJ, 2013, 346: f1169[2022-04-20]. https://doi.org/10.1136/bmj.f1169.
[16] CAO Y, JIA X, HUANG Y, et al. Vitamin D stimulates miR-26b-5p to inhibit placental COX-2 expression in preeclampsia. Sci Rep,2021,11(1): 11168. DOI: 10.1038/s41598-021-90605-9
[17] GANGULY A, TAMBLYN J A, FINN-SELL S, et al. Vitamin D, the placenta and early pregnancy: Effects on trophoblast function. J Endocrinol,2018,236(2): R93–R103. DOI: 10.1530/JOE-17-0491
[18] SASSI F, TAMONE C, D'AMELIO P. Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients,2018,10(11): 1656. DOI: 10.3390/nu10111656
[19] SEQUEIRA LOPEZ M L, GOMEZ R A. Novel mechanisms for the control of renin synthesis and release. Curr Hypertens Rep,2010,12(1): 26–32. DOI: 10.1007/s11906-009-0080-z
[20] GOVENDER D, DAMJANOVIC L, GAZA C A, et al. Vitamin D decreases silencer methylation to downregulate renin gene expression. Gene, 2021, 786: 145623[2022-04-20]. https://doi.org/10.1016/j.gene.2021.145623.
[21] YUAN W, PAN W, KONG J, et al. 1, 25-dihydroxy vitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem,2007,282(41): 29821–29830. DOI: 10.1074/jbc.M705495200
-
期刊类型引用(1)
1. 张爱萍,杨霞,张学红. 维生素D与女性生育力及生殖系统疾病的研究进展. 重庆医科大学学报. 2024(01): 12-17 . 百度学术
其他类型引用(2)