欢迎来到《四川大学学报(医学版)》

基于分水岭及区域增长算法建立一种测量自发性脑出血血肿体积的分割方法

Hematoma Segmentation of Spontaneous Intracerebral Hemorrhage Based on Watershed and Region-Growing Algorithm

  • 摘要:
      目的   基于分水岭及区域增长算法建立一种CT图像脑血肿分割方法,以快速准确测量血肿体积,探讨其与临床金标准手动分割结果的一致性,并与临床常用的两种多田公式计算进行比较。
      方法   回顾性收集2018年1月–2019年6月由于自发性脑出血于四川大学华西医院神经外科就诊的患者术前152例CT图像,通过随机数字表将其随机分为训练集、测试集和验证集,分别为100例、22例、30例。算法训练及测试采用训练集与测试集的标记结果,验证集采用4种方式——人工手动分割、算法分割(基于分水岭及区域增长算法的分割计算)、多田公式(传统多田公式计算)与精准多田公式(基于3D-slicer的精准多田公式计算)——对出血病灶体积进行测量。将符合研究对象标准的医学数字成像和通信(Digital Imaging and Communications in Medicine, DICOM)资料通过两名高年资神经外科医生进行手动分割脑出血病灶。基于分水岭算法及区域增长算法搭建血肿分割模型以神经外科医生选取的种子点作为增长起点,采用区域灰度差异准则,结合手动分割验证,最终确定符合颅内血肿分割精度要求的区域生长阈值。以人工手动分割为金标准,采用Bland-Altman一致性分析验证其余3种测量血肿体积的方式的一致性。
      结果   以人工手动分割为金标准,3种测量血肿体积的方式中,算法分割百分误差最小,差值范围最窄,组内相关系数最高(0.987),一致性较好,且95%一致性界限(limits of agreement, LoA)最窄。其分割的百分误差在不同血肿体积比较中差异无统计学意义。
      结论   基于分水岭及区域增长算法的自发性脑出血血肿分割方法的测量稳定,与临床金标准一致性好,具有一定临床意义,但仍需更多的临床样本予以验证。

     

    Abstract:
      Objective  To establish a brain hematoma CT image segmentation method based on watershed and region-growing algorithm so as to measure hematoma volume quickly and accurately, to explore the consistency between the results of this segmentation method and those of manual segmentation, the clinical gold standard, and to compare the results of this method with the calculation of the two Tada formulas commonly used in clinical practice.
      Methods  The preoperative CT images of 152 patients who were treated for spontaneous cerebral hemorrhage at the Department of Neurosurgery, West China Hospital, Sichuan University between January 2018 and June 2019 were retrospectively collected. The CT images were randomly assigned, by using a random number table, to the training set, the test set and the validation set, which contained 100 patients, 22 patients and 30 patients, respectively. The labeling results of the training set and the test set were used in algorithm training and testing. Four methods, namely, manual segmentation, algorithm segmentation, i.e., segmentation calculation based on watershed and regional growth algorithm, Tada formula, i.e., the traditional Tada formula calculation, and accurate Tada formula, i.e., accurate Tada formula calculation based on 3D-Slicer, were applied on the validation set to measure the hematoma volume. The Digital Imaging and Communications in Medicine (DICOM) data of subjects meeting the selection criteria of the study were manually segmented by two experienced neurosurgeons. The hematoma segmentation model was built based on watershed algorithm and regional growth algorithm. Seed point selected by neurosurgeons was taken as the starting point of growth. Regional grayscale difference criterion combined with manual segmentation validation were adopted to determine the regional growth threshold that met the segmentation precision requirements for intracranial hematoma. Using manual segmentation as the gold standard, Bland-Altman consistency analysis was used to verify the consistency of the three other methods for measuring hematoma volume.
      Results  With manual segmentation as the gold standard, among the three methods of measuring hematoma volume, algorithm segmentation had the smallest percentage error, the narrowest range of difference, the highest intra-group correlation coefficient (0.987), good consistency, and the narrowest 95% limits of agreement (LoA). The percentage error of its segmentation was not statistically significant for hematomas of different volumes.
      Conclusion  The segmentation method of spontaneous intracerebral hemorrhage based on watershed and regional growth algorithm shows stable measurement performance and good consistency with the clinical gold standard, which has considerable clinical significance, but it still needs further validation with more clinical samples.

     

/

返回文章
返回