欢迎来到《四川大学学报(医学版)》 2025年5月11日 星期日

口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展

张树伟, 李玉超, 潘亚萍

张树伟, 李玉超, 潘亚萍. 口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展[J]. 四川大学学报(医学版), 2022, 53(2): 181-187. DOI: 10.12182/20220360302
引用本文: 张树伟, 李玉超, 潘亚萍. 口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展[J]. 四川大学学报(医学版), 2022, 53(2): 181-187. DOI: 10.12182/20220360302
ZHANG Shu-wei, LI Yu-chao, PAN Ya-ping. Research Progress in the Association between Amino Acid Metabolism of Oral Microorganisms and Host Cells and Oral Diseases[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 181-187. DOI: 10.12182/20220360302
Citation: ZHANG Shu-wei, LI Yu-chao, PAN Ya-ping. Research Progress in the Association between Amino Acid Metabolism of Oral Microorganisms and Host Cells and Oral Diseases[J]. Journal of Sichuan University (Medical Sciences), 2022, 53(2): 181-187. DOI: 10.12182/20220360302

口腔微生物及宿主细胞氨基酸代谢与口腔疾病相关性研究进展

基金项目: 国家自然科学基金面上项目(No. 82170969、No.81870771)资助
详细信息
    通讯作者:

    潘亚萍: E-mail:yppan@cmu.edu.cn

Research Progress in the Association between Amino Acid Metabolism of Oral Microorganisms and Host Cells and Oral Diseases

More Information
  • 摘要: 氨基酸作为蛋白质的合成底物,是细胞内仅次于葡萄糖的重要能量和营养来源。微生物和宿主细胞均能进行氨基酸代谢,其代谢产物广泛参与炎症、免疫反应等生物学过程。探究疾病发生发展过程中微生物与宿主氨基酸代谢变化成为新的研究热点。本文将对色氨酸、精氨酸等氨基酸代谢途径及其产物与龋病、牙周病、舍格伦综合征,甚至口腔肿瘤等常见口腔疾病发生发展相关研究进展做一综述,以期为深入理解口腔疾病致病机制和指导临床治疗提供理论依据。

     

    Abstract: Amino acids, the substrate of protein synthesis, are an important source of energy and nutrition, second only to glucose. Previous studies have found that both microorganisms and their host cells can metabolize amino acids, and the metabolites are widely involved in the regulation of various biological processes, including inflammation and immune response. Exploring the changes in amino acid metabolism during the pathogenesis and progression of diseases has become a new hot topic of research. We summarized in this review the research progress in the pathogenesis and progression of common oral diseases, including dental caries, periodontal diseases, Sjögren’s syndrome, and even oral tumors, related to metabolism pathways of amino acids, especially tryptophan and arginine, and their metabolites, attempting to provide a theoretical basis for enhancing understanding of the pathogenic mechanism of the oral diseases, as well as guidance for clinical treatment.

     

  • 人体口腔中定植700多种微生物,分布于牙面、舌、黏膜、硬腭、牙体龋坏部位和牙周袋内。细菌积聚和代谢是引起龋病和牙周病等主要口腔疾病的重要原因[1]。通过检测临床患者唾液、龈沟液及血清中的差异代谢产物,能够为探究口腔疾病的病理机制提供新的切入点。目前,越来越多的研究认为氨基酸代谢可能在疾病发生发展进程中发挥重要作用。氨基酸是组成蛋白质的基本单位,是机体内仅次于葡萄糖的重要能量和营养来源。组成人体蛋白质的氨基酸共有20种,包括色氨酸、甲硫氨酸等8种必需氨基酸和甘氨酸、丝氨酸等12种非必需氨基酸。微生物和宿主细胞均能进行氨基酸代谢,其代谢产物广泛参与炎症、免疫反应、肿瘤等生物学过程[2-3]。目前,色氨酸、精氨酸、甲硫氨酸、半胱氨酸等代谢相关研究日益增多,其与龋病、牙周病、舍格伦综合征等口腔疾病的关系引起学者们广泛关注。本文主要就口腔微生物及宿主细胞色氨酸、精氨酸等代谢途径及产物在口腔疾病中研究进展做一综述,以期为深入理解口腔疾病致病机制和指导临床治疗提供充足的理论依据。

    色氨酸是一种人体从饮食中获取的必需氨基酸,是唯一含有吲哚结构的氨基酸[4-5]。体内绝大部分游离色氨酸经肠道上皮吸收,最终合成机体所需蛋白质,而10%~20%的游离色氨酸被细菌等微生物进一步分解代谢[6] 。宿主细胞和微生物除了能利用色氨酸作为底物合成蛋白质,还能够分别通过不同代谢途径生成活性代谢产物,参与调节宿主-微生物相互作用过程[3]。口腔内游离色氨酸主要有3条代谢途径:①吲哚途径:色氨酸可在梭杆菌属(Fusobacterium)、普氏菌属(Prevotella)和卟啉单胞菌属(Porphyromonas)等龈下菌斑微生物作用下直接代谢生成吲哚及吲哚衍生物,这些代谢产物可作为毒力因子参与牙周炎及口臭形成[7]。②5-羟色胺(5-hydroxy-tryptamine, 5-HT)途径:色氨酸可在宿主细胞色氨酸羟化酶(tryptophan hydroxylase, TPH)的作用下生成5-羟基色氨酸(5-hydroxytryptophan, 5-HTP),并进一步代谢生成5-HT [8]。5-HT是一种重要神经递质,可参与调节中枢神经系统生理功能。此外,5-HT还可与T细胞、巨噬细胞、树突细胞等多种免疫细胞相应受体结合而发挥炎症和免疫调节作用[9-10]。③犬尿氨酸途径(kynurenine metabolic pathway, KP):95%以上游离色氨酸经该途径代谢,是机体细胞色氨酸代谢过程中最重要途径[11]。该途径由吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase 1, IDO)和色氨酸-2,3-双加氧酶(tryptophan 2,3-dioxygenase, TDO)介导,生成犬尿氨酸(kynurenine, Kyn)及下游产物,如喹啉酸、烟酸、烟酰胺腺嘌呤二核苷酸和犬尿酸等[12]。其中,IDO作为该途径的关键限速酶,在哺乳动物、真菌及细菌内均广泛表达[13]。IDO具有对炎症高度敏感的特性,在炎症环境尤其是干扰素存在情况下,不同类型细胞中IDO表达上调增加对色氨酸的代谢过程。IDO介导宿主细胞色氨酸代谢增强能够降低机体游离色氨酸水平,导致细菌等微生物可利用的色氨酸减少,从而抑制细菌利用色氨酸合成所需蛋白质或降解色氨酸获取能量过程,进而抑制微生物的生长存活[14-15]。目前研究发现,IDO及Kyn能够促进Tregs细胞分化,发挥免疫抑制功能。此外,经吲哚途径及犬尿氨酸途径产生的其他色氨酸代谢产物都可作为转录因子芳香烃受体(aryl hydrocarbon receptor, AhR)的配体,激活AhR下游信号通路,参与介导炎症、免疫反应等多种生物学过程[16]

    DURAN-PINEDO等[17]研究发现在牙周炎进展过程中,龈下菌斑微生物可降解饮食中的蛋白质引起氨基酸代谢水平发生改变。BALCI等[18]学者利用液相色谱-串联质谱检测技术检测分析了Ⅲ期B级广泛型牙周炎患者、Ⅲ期C级广泛型牙周炎患者及健康对照者的唾液中游离氨基酸水平,结果显示与健康对照者相比,Ⅲ期B级牙周炎患者唾液中脯氨酸和色氨酸的含量更为显著,而Ⅲ期C级牙周炎患者唾液中甲硫氨酸、谷氨酸及精氨酸含量明显升高,且色氨酸含量与探诊出血、菌斑指数均呈现显著相关性。有研究发现,与健康对照相比,牙龈炎患者血浆中色氨酸含量增加,外周血中Th17细胞比例增加,Tregs细胞无明显改变,Th17/Tregs比例失衡,Th17细胞能够分泌炎性因子IL-17A,促进牙龈炎症反应,其可能机制为牙龈组织中IDO1活性下降导致色氨酸-犬尿氨酸代谢过程受到抑制,犬尿氨酸等代谢产物减少从而降低对CD4+T细胞向Tregs分化的诱导作用,然而牙周微生物是否在此过程中参与对色氨酸的代谢调控过程尚需进一步探究[19]。然而,MOON等[20]和QIN等[21]通过体外研究发现,细菌脂多糖(lipopolysaccharide, LPS)刺激人牙周膜细胞可明显促进IDO mRNA和蛋白表达,增加色氨酸代谢生成犬尿氨酸,同时LPS处理的小鼠牙周膜中IDO蛋白表达增加,IDO能够防止过度炎症反应及牙周组织破坏,提示色氨酸代谢平衡对维持稳态具有重要作用。NISAPAKULTORN等[22]研究发现,IDO可在牙龈组织中的上皮细胞、成纤维细胞、内皮细胞和炎性单核细胞中检出,且在牙周炎组织中的水平高于健康组织。该研究同样发现,IFN-γ、IL-1β、TNF-α等炎症因子及P. gingivalis-LPS均能诱导人牙龈成纤维细胞IDO表达。IDO可发挥免疫抑制分子作用,牙周炎症过程中IDO活性及色氨酸水平调节可能受到复杂免疫调控。

    此外,色氨酸另一种重要代谢产物5-HT及其前体物质5-HTP可以参与调节骨代谢[23-24]。LI等[25]研究发现,喂饲5-HTP能够显著增加实验性牙周炎大鼠血清中5-HT浓度,同时5-HTP能够刺激破骨细胞生成,增加核因子κB受体活化因子配体/骨保护素的比值,加重牙槽骨吸收及牙槽骨微结构破坏,提示我们通过抑制5-HT代谢途径或使用5-HT生成抑制剂可能有助于减轻牙周炎症,为牙周疾病的防治提供新的研究思路。

    舍格伦综合征,又称干燥综合征,是一种以外分泌腺淋巴细胞浸润、外分泌腺损坏和功能紊乱为特征的系统性自身免疫性疾病,其主要临床表现为眼干、口干,同时伴有关节疼痛和疲劳等全身多系统损害特征[26]。大约80%的患者会出现唾液分泌下降,即口干症。口腔干燥可致舌表面呈绛红色,并有深的沟纹出现,唾液腺分泌下降导致唾液中酶的抗菌作用丧失,因此常伴有牙龈炎、口角炎和猖獗龋[27]。近年来,舍格伦综合征患者的代谢异常与其发病机制之间的联系引起学者们关注。以往研究利用代谢组学技术,检测了舍格伦综合征患者的唾液、血液及尿液样本均发现氨基酸水平改变[28-29],尤其是色氨酸、脯氨酸和苯丙氨酸[30]。其中,色氨酸代谢通路改变最为显著,舍格伦综合征及唾液腺炎症能够激活IDO活性,增加犬尿氨酸含量[31]。MARIA等[32]研究发现,舍格伦综合征患者血清中IDO活性增加,Tregs细胞比例升高发挥免疫抑制作用,同时能够升高犬尿氨酸下游神经毒性代谢产物,如尿氨酸单氧酶。犬尿氨酸代谢通路与舍格伦综合征患者的神经病变相关[31]。通过干预色氨酸代谢通路中IDO引发的免疫失衡可能为舍格伦综合征患者提供新的治疗策略。

    近年来,色氨酸代谢与肿瘤发生发展的关系受到高度关注。色氨酸犬尿氨酸代谢途径的关键限速酶IDO在黑色素瘤、结肠癌、肺癌等多种肿瘤组织中增加,且与肿瘤预后呈负性相关[33-35]。IDO活化能够促进免疫抑制微环境形成,从而抑制抗肿瘤免疫反应过程。IDO介导免疫抑制主要依赖以下两个过程:①IDO在树突细胞或肿瘤细胞中过度表达会消耗肿瘤微环境中的色氨酸,从而通过氨基酸感应因子一般性调控阻遏蛋白激酶2信号通路抑制淋巴细胞的细胞周期进程;②犬尿氨酸等毒性代谢产物累积可诱导淋巴细胞凋亡和Tregs分化[36]。口腔癌是常见的恶性肿瘤之一,其中90%为口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)。研究认为癌组织中IDO表达升高是OSCC不良预后的危险因素,尤其是接受辅助放化疗和尼妥珠单抗治疗的OSCC患者[37]。ZHENG等[38]研究结果显示,IDO在OSCC细胞及癌组织中均表达升高,IDO可通过调控BCL2A1表达影响OSCC细胞生长,同时利用超高效液相串联质谱检测分析了34例OSCC患者和健康对照者的血清发现,与健康对照相比,OSCC患者血清中Kyn/Trp比例升高,表明OSCC患者IDO活化促进了色氨酸的犬尿氨酸代谢途径,且IDO高表达与预后不佳相关。IDO介导免疫抑制是否在口腔肿瘤发生发展过程中发挥作用尚需进一步研究探讨。

    精氨酸是一种半必需氨基酸[39],最常见的形式为左旋精氨酸,可由精氨琥珀酸合成酶1和精氨琥珀酸裂解酶催化瓜氨酸和天冬氨酸合成,也可由饮食摄入[40]。精氨酸在健康人群口腔中的平均浓度仅为50 µmol/L[41]。作为唾液黏蛋白的成分之一,精氨酸能够伴随唾液黏蛋白的半透明作用黏附在牙齿表面,并在精氨酸脱亚氨酶系统(arginine deiminase system, ADS)的作用下分解产生氨、二氧化碳及ATP,可作为口腔细菌重要产碱代谢底物,缓冲和调节唾液的pH值,进而调节口腔菌群平衡及离子间动态平衡,是决定牙菌斑酸碱平衡的重要机制[42-43]。目前研究发现精氨酸代谢主要存在于血链球菌(Streptococcus sanguis)、副血链球菌(Streptococcus parasanguis)、格登链球菌(Streptococcus gordonii)及某些乳杆菌属(Lactobacillus)和放线菌属(Actinomyces)中[44-46]

    龋病是以细菌为主的多因素影响下,牙体硬组织发生的慢性感染性疾病。目前研究认为牙菌斑中耐酸菌比例增加和口腔中非耐酸性益生菌比例的减少是导致龋病的重要原因[41]。大部分口腔益生菌能够在ADS的作用下代谢精氨酸生成氨和二氧化碳,缓冲和调节唾液pH值,积极调控牙齿脱矿与再矿化之间的平衡,阻止产酸菌和耐酸菌形成优势菌群,从而抑制致龋性牙菌斑生物膜形成[47]。研究发现,精氨酸或精氨酸与氟化钠联用能够协同抑制变异链球菌(Streptococcus mutans)的生长及其生物膜形成,协同促进血链球菌在多菌种生物膜中的竞争性优势[48]。使用含精氨酸牙膏能有效降低龋病发病率[49]。将精氨酸用于龋病早期防治被认为具有安全且效益良好的优势。

    宿主细胞可通过精氨酸酶途径代谢精氨酸,生成鸟氨酸和尿素等代谢产物,也可通过一氧化氮(nitric oxide, NO)途径生成NO,进而在细胞信号传导过程中发挥重要作用[50-51]。人体内精氨酸酶分为Ⅰ型和Ⅱ型,其中Ⅰ型主要存在于肝脏中,而Ⅱ型作为线粒体酶在很多细胞中都有不同程度表达[50]。目前研究认为唾液精氨酸酶活性(salivary arginase activity, SAA)可能在牙周疾病进程中发挥重要作用[52]。GHEREN等[53]研究结果显示,慢性牙周炎患者SAA显著高于健康对照者2.5倍,经过牙周治疗后,精氨酸酶水平较治疗前显著降低。OZER等[54]同样发现牙周炎患者SAA及NO含量明显高于健康者,提示SAA可能具有作为牙周状态标志物的潜在应用。孙继军等[55]研究显示精氨酸酶在正常牙周组织中偶有表达,而实验性牙周炎大鼠组织中精氨酸酶主要在巨噬细胞和血管内皮细胞中表达,其表达阳性细胞数随炎症程度加重而增加,牙周组织内精氨酸酶表达与牙周炎炎症程度呈明显正相关。动物实验结果显示精氨酸能够上调实验性牙移动大鼠牙周组织中内皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)表达,促进eNOS参与牙周组织改建,从而促进实验性牙移动大鼠的骨改建及血管改建[56]。牙周炎时牙龈组织中精氨酸酶增加,引起代谢产物鸟氨酸含量升高,鸟氨酸可作为多胺的前体,最终导致多胺生成增多。多胺作为细菌的营养物质能够促进细菌生长,加重牙周炎症进程[54]。此外,MORADALI等[57]学者构建了P. gingivalis 381菌株在琼脂培养板表面迁移运动模型,发现P. gingivalis 381在迁移重新定植过程中可消耗精氨酸,并代谢产生瓜氨酸和鸟氨酸,提示精氨酸可能影响P. gingivalis在宿主牙周组织中的迁移及定植状态。上述研究为我们进一步了解牙周疾病的可能机制提供了新的思路,抑制精氨酸代谢途径可能有助于减轻或抑制牙周炎症。

    机体氨基酸代谢紊乱在慢性炎症性疾病、自身免疫性疾病和肿瘤等多种疾病中发挥重要作用[58-60]。除了色氨酸和精氨酸代谢,目前研究发现半胱氨酸、甲硫氨酸、丝氨酸代谢等也与口腔疾病相关。

    口腔异味也称为口臭,是指人们在呼吸时呼出的不愉快的气味。口臭在人群中的发生率为15%~60%,可分为口外性口臭(extra-oral halitosis, EOH)和口内性口臭(intra-oral halitosis, IOH)[61],而IOH是最常见的类型。口腔内多种细菌能够代谢含硫氨基酸如非必需氨基酸半胱氨酸和必需氨基酸甲硫氨酸产生挥发性含硫化合物(volatile sulphur compounds, VSCs),其中90%的VSCs为硫化氢(H2S)和甲基硫醇(CH3SH)。以往有研究显示,健康人群唾液中H2S平均含量为0.5 ng/10 mL,而IOH人群唾液中H2S含量则高达6.7 ng/10 mL[61]。研究发现,牙周炎症部位可大量产生H2S和CH3SH,卟啉单胞菌属、普氏菌属及齿垢密螺旋体(T. denticola)可在1-蛋氨酸-α-脱氨基-γ-巯基甲烷裂解酶的作用下代谢甲硫氨酸产生CH3SH,同时可能为其他厌氧菌提供氨基酸促进代谢生成H2S和CH3SH,促进口腔异味发生[62-63]。猕猴桃碱是一种从猕猴桃中提取的半胱氨酸蛋白酶,以往一项双盲随机交叉试验研究结果显示,受试者每天服用3次含有猕猴桃碱的药片,服用第1天后受试组和安慰剂组的VSCs水平显著降低,服用7 d后受试组VSCs水平降低,而安慰剂组无明显改变,提示半胱氨酸蛋白酶可减少舌苔中代谢底物[64]。目前临床主要采用机械清除菌斑及使用含有抑菌成分的口腔护理产品改善口腔异味[62]。开发针对半胱氨酸和甲硫氨酸的代谢酶类药物可能具有改善口腔异味的临床应用潜能。

    丝氨酸是一种非必需氨基酸,可参与核苷酸合成、氧化应激反应、三羧酸循环等代谢过程。丝氨酸相关代谢通路形成复杂网络,称为一碳代谢[65]。丝氨酸来源于从外界微环境中摄取或从头合成途径。多种酶可参与丝氨酸从头合成过程,包括磷酸丝氨酸转氨酶-1、磷酸甘油酸脱氢酶、磷酸丝氨酸磷酸化酶、丝氨酸羟甲基转移酶1和2[66]。以往研究证实,膳食丝氨酸能够缓解啮齿类动物模型肝脏中三酰甘油累积和氧化损伤[67-68]。体外内实验研究发现丝氨酸能够预防LPS引起的炎性反应,能够有助于维持肠道屏障完整性,进一步研究表明丝氨酸可缓解葡聚糖硫酸钠诱导的小鼠结肠炎症,但其具体机制尚未阐明[69]。根尖周炎是一种发生在根尖周围组织的炎症性疾病,主要由根管内的感染通过根尖孔作用于根尖周组织引发[70]。近期有学者对47例患根尖周炎的前牙根尖周组织进行了代谢组学检测,发现根尖周炎与氨基酸代谢、糖和脂肪酸代谢改变相关。随着根尖周炎炎症程度增加,根尖周组织中丝氨酸水平明显升高,且可能与根尖周炎过程中机体自身免疫调节相关[71-72]。丝氨酸代谢与牙周病或口腔肿瘤等其他口腔疾病的相关研究则仍有待探究。

    综上所述,色氨酸、半胱氨酸等氨基酸作为机体细胞及微生物生存及ATP能量供应的必需营养物质,其代谢过程及产物与口腔疾病甚至肿瘤的发生发展有着密不可分的联系。宿主细胞可通过自身代谢合成或从饮食中获取机体所需非必需氨基酸和必需氨基酸,同时,细菌等微生物也可利用体内氨基酸进行蛋白质合成或分解代谢,生成活性代谢产物作为毒力因子参与炎症、免疫反应等生物学过程。宿主细胞消耗色氨酸等必需氨基酸能够限制微生物的生长及其毒力,宿主-微生物之间的氨基酸代谢平衡可能对于机体稳态具有重要作用。氨基酸代谢存在着复杂调控网络,针对疾病发生发展过程中某一特定氨基酸的宿主或微生物代谢研究并不能全面揭示该疾病的致病机理。目前,代谢组学作为一种新兴的研究方式,具有高通量、高敏感性及高准确性的优势,被广泛应用于分析临床患者唾液、血清及组织等样本中的差异氨基酸代谢,为寻找疾病发病机制、诊断及预后相关生物标志物提供新的策略,但仍存在样本量不足及年龄、性别、生活方式、环境等混杂因素较多等问题。在今后的研究中,通过获取充足的口腔疾病患者样本、构建动物模型及体外不同类型口腔宿主细胞-微生物感染模型,进一步深入探究口腔微生物和宿主细胞对氨基酸的代谢过程、两者之间的交互作用及具体分子机制,将有助于深入理解口腔疾病致病机制,为指导临床治疗提供充足理论依据。

    *    *    *

    利益冲突 所有作者均声明不存在利益冲突

  • [1]

    ZHANG Y, WANG X, LI H, et al. Human oral microbiota and its modulation for oral health. Biomed Pharmacother,2018,99: 883–893. DOI: 10.1016/j.biopha.2018.01.146

    [2]

    DHANKHAR R, GUPTA V, KUMAR S, et al. Microbial enzymes for deprivation of amino acid metabolism in malignant cells: Biological strategy for cancer treatment. Appl Microbiol Biotechnol,2020,104(7): 2857–2869. DOI: 10.1007/s00253-020-10432-2

    [3]

    COSTANTINI C, BELLET M M, RENGA G, et al. Tryptophan co-metabolism at the host-pathogen interface. Front Immunol, 2020, 11: 67[2021-11-19]. https://doi.org/10.3389/fimmu.2020.00067.

    [4]

    BARIK S. The uniqueness of tryptophan in biology: Properties, metabolism, interactions and localization in proteins. Int J Mol Sci,2020,21(22): 8776. DOI: 10.3390/ijms21228776

    [5]

    PALEGO L, BETTI L, ROSSI A, et al. Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids, 2016, 2016: 8952520[2021-11-19]. https://www.hindawi.com/journals/jaa/2016/895252. doi: 10.1155/2016/8952520.

    [6]

    DONG F, PERDEW G H. The aryl hydrocarbon receptor as a mediator of host-microbiota interplay. Gut Microbes, 2020, 12(1): 1859812[2021-11-19]. https://www.tandfonline.com/doi/full/10.1080/19490976.2020. doi: 10.1080/19490976.2020.1859812.

    [7]

    TAKAHASHI N. Oral microbiome metabolism: from "who are they"? to "what are they doing"? J Dent Res,2015,94(12): 1628–1637. DOI: 10.1177/0022034515606045

    [8]

    GRIFKA-WALK H M, JENKINS B R, KOMINSKY D J. Amino acid trp: The far out impacts of host and commensal tryptophan metabolism. Front Immunol, 2021, 12: 653208[2021-11-19]. https://www.frontiersin.org/articles/10.3389/fimmu.2021.653208/full. doi: 10.3389/fimmu.2021.653208.

    [9]

    WU H, DENNA T H, STORKERSEN J N, et al. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res,2019,140: 100–114. DOI: 10.1016/j.phrs.2018.06.015

    [10]

    SHAJIB M S, KHAN W I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf),2015,213(3): 561–574. DOI: 10.1111/apha.12430

    [11]

    BADAWY A A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int J Tryptophan Res, 2017, 10: 1178646917691938[2021-11-19]. https://journals.sagepub.com/doi/metrics/10.1177/1178646917691938. doi: 10.1177/1178646917691938.

    [12]

    LIU X H, ZHAI X Y. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie,2021,182: 131–139. DOI: 10.1016/j.biochi.2021.01.005

    [13]

    YUASA H J, BALL H J. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. J Exp Zool B Mol Dev Evol,2015,324(2): 128–140. DOI: 10.1002/jez.b.22608

    [14]

    PFEFFERKORN E R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci U S A,1984,81(3): 908–912. DOI: 10.1073/pnas.81.3.908

    [15]

    CHOERA T, ZELANTE T, ROMANI L, et al. A multifaceted role of tryptophan metabolism and indoleamine 2,3-dioxygenase activity in aspergillus fumigatus-host interactions. Front Immunol, 2017, 8: 1996[2021-11-19]. https://www.frontiersin.org/articles/10.3389/fimmu.2017.01996/full. doi: 10.3389/fimmu.2017.01996.

    [16]

    NEAVIN D R, LIU D, RAY B, et al. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int J Mol Sci,2018,19(12): 3851. DOI: 10.3390/ijms19123851

    [17]

    DURAN-PINEDO A E, FRIAS-LOPEZ J. Beyond microbial community composition: Functional activities of the oral microbiome in health and disease. Microbes Infect,2015,17(7): 505–516. DOI: 10.1016/j.micinf.2015.03.014

    [18]

    BALCI N, KURGAN S, CEKICI A, et al. Free amino acid composition of saliva in patients with healthy periodontium and periodontitis. Clin Oral Investig,2021,25(6): 4175–4183. DOI: 10.1007/s00784-021-03977-7

    [19]

    WANG W, WANG X, LU S, et al. Metabolic disturbance and Th17/Treg ombalance are associated with progression of gingivitis. Front Immunol, 2021, 12: 670178[2021-11-19]. https://www.frontiersin.org/articles/10.3389/fimmu.2021.670178/full. doi: 10.3389/fimmu.2021.670178.

    [20]

    MOON J S, CHEONG N R, YANG S Y, et al. Lipopolysaccharide-induced indoleamine 2,3-dioxygenase expression in the periodontal ligament. J Periodontal Res,2013,48(6): 733–739. DOI: 10.1111/jre.12063

    [21]

    QIN X, LIU J Y, WANG T, et al. Role of indoleamine 2,3-dioxygenase in an inflammatory model of murine gingiva. J Periodontal Res,2017,52(1): 107–113. DOI: 10.1111/jre.12374

    [22]

    NISAPAKULTORN K, MAKRUDTHONG J, SA-ARD-IAM N, et al. Indoleamine 2,3-dioxygenase expression and regulation in chronic periodontitis. J Periodontol,2009,80(1): 114–121. DOI: 10.1902/jop.2009.080315

    [23]

    CHABBI-ACHENGLI Y, COUDERT A E, CALLEBERT J, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S A,2012,109(7): 2567–2572. DOI: 10.1073/pnas.1117792109

    [24]

    LI X, MA Y, WU X, et al. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway. Biochem Biophys Res Commun,2013,441(4): 809–814. DOI: 10.1016/j.bbrc.2013.10.141

    [25]

    LI X, WU X, MA Y, et al. Oral administration of 5-hydroxytryptophan aggravated periodontitis-induced alveolar bone loss in rats. Arch Oral Biol,2015,60(5): 789–798. DOI: 10.1016/j.archoralbio.2015.01.015

    [26]

    SRIVASTAVA A, MAKARENKOVA H P. Innate immunity and biological therapies for the treatment of Sjogren’s Syndrome. Int J Mol Sci,2020,21(23): 9172. DOI: 10.3390/ijms21239172

    [27] 俞创奇. 舍格伦综合征的病因和治疗进展. 中国口腔颌面外科杂志,2014,12(5): 385–389.
    [28]

    KAGEYAMA G, SAEGUSA J, IRINO Y, et al. Metabolomics analysis of saliva from patients with primary Sjogren’s syndrome. Clin Exp Immunol,2015,182(2): 149–153. DOI: 10.1111/cei.12683

    [29]

    HERRALA M, MIKKONEN J J W, PESONEN P, et al. Variability of salivary metabolite levels in patients with Sjogren’s syndrome. J Oral Sci,2020,63(1): 22–26. DOI: 10.2334/josnusd.19-0504

    [30]

    FERNANDEZ-OCHOA A, BORRAS-LINARES I, QUIRANTES-PINE R, et al. Discovering new metabolite alterations in primary Sjogren’s syndrome in urinary and plasma samples using an HPLC-ESI-QTOF-MS methodology. J Pharm Biomed Anal, 2020, 179: 112999[2021-11-19]. https://doi.org/10.1016/j.jpba.2019.112999.

    [31]

    DE OLIVEIRA F R, FANTUCCI M Z, ADRIANO L, et al. Neurological and inflammatory manifestations in Sjogren’s Syndrome: the role of the kynurenine metabolic pathway. Int J Mol Sci,2018,19(12): 3953. DOI: 10.3390/ijms19123953

    [32]

    MARIA N I, VAN HELDEN-MEEUWSEN C G, BRKIC Z, et al. Association of increased Treg cell levels with elevated indoleamine 2,3-dioxygenase activity and an imbalanced kynurenine pathway in interferon-positive primary Sjogren’s syndrome. Arthritis Rheumatol,2016,68(7): 1688–1699. DOI: 10.1002/art.39629

    [33]

    RUBEL F, KERN J S, TECHNAU-HAFSI K, et al. Indoleamine 2,3-dioxygenase expression in primary cutaneous melanoma correlates with breslow thickness and is of significant prognostic value for progression-free survival. J Invest Dermatol,2018,138(3): 679–687. DOI: 10.1016/j.jid.2017.09.036

    [34]

    BRANDACHER G, PERATHONER A, LADURNER R, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin Cancer Res,2006,12(4): 1144–1151. DOI: 10.1158/1078-0432.CCR-05-1966:

    [35]

    SUZUKI Y, SUDA T, FURUHASHI K, et al. Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer,2010,67(3): 361–365. DOI: 10.1016/j.lungcan.2009.05.001

    [36]

    PLATTEN M, WICK W, VAN DEN EYNDE B J. Tryptophan catabolism in cancer: Beyond IDO and tryptophan depletion. Cancer Res,2012,72(21): 5435–5440. DOI: 10.1158/0008-5472.CAN-12-0569

    [37]

    LAIMER K, TROESTER B, KLOSS F, et al. Expression and prognostic impact of indoleamine 2,3-dioxygenase in oral squamous cell carcinomas. Oral Oncol,2011,47(5): 352–357. DOI: 10.1016/j.oraloncology.2011.03.007

    [38]

    ZHENG Q, GAN G, GAO X, et al. Targeting the IDO-BCL2A1-Cytochrome C pathway promotes apoptosis in oral squamous cell carcinoma. Onco Targets Ther,2021,14: 1673–1687. DOI: 10.2147/OTT.S288692

    [39]

    TAPIERO H, MATHE G, COUVREUR P, et al. I. Arginine. Biomed Pharmacother,2002,56(9): 439–445. DOI: 10.1016/s0753-3322(02)00284-6

    [40]

    CHEN C L, HSU S C, ANN D K, et al. Arginine signaling and cancer metabolism. Cancers (Basel),2021,13(14): 3541. DOI: 10.3390/cancers13143541

    [41] 郭强, 徐欣, 周学东. 口腔细菌代谢产碱及其分子生物学研究进展. 国际口腔医学杂志,2013,40(1): 80–85.
    [42]

    NASCIMENTO M M, ALVAREZ A J, HUANG X, et al. Metabolic profile of supragingival plaque exposed to arginine and fluoride. J Dent Res,2019,98(11): 1245–1252. DOI: 10.1177/0022034519869906

    [43]

    BIJLE M N A, YIU C K Y, EKAMBARAM M. Can oral ADS activity or arginine levels be a caries risk indicator? A systematic review and meta-analysis. Clin Oral Investig,2018,22(2): 583–596. DOI: 10.1007/s00784-017-2322-9

    [44]

    HUANG X, SCHULTE R M, BURNE R A, et al. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res,2015,49(2): 165–176. DOI: 10.1159/000365296

    [45]

    CHAKRABORTY B, BURNE R A. Effects of arginine on streptococcus mutans growth, virulence gene expression, and stress tolerance. Appl Environ Microbiol, 2017, 83(15): e00496-17[2021-11-19]. https://journals.asm.org/doi/full/10.1128/AEM.00496-17. doi: 10.1128/AEM.00496-17.

    [46]

    JAKUBOVICS N S, ROBINSON J C, SAMARIAN D S, et al. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol,2015,97(2): 281–300. DOI: 10.1111/mmi.13023

    [47]

    AGNELLO M, CEN L, TRAN N C, et al. Arginine improves pH homeostasis via metabolism and microbiome modulation. J Dent Res,2017,96(8): 924–930. DOI: 10.1177/0022034517707512

    [48] 周双双, 郑欣, 周学东, 等. 菌斑生物膜产碱代谢与龋病. 国际口腔医学杂志,2016,43(5): 573–577.
    [49]

    ASTVALDSDOTTIR A, NAIMI-AKBAR A, DAVIDSON T, et al. Arginine and caries prevention: A systematic review. Caries Res,2016,50(4): 383–393. DOI: 10.1159/000446249

    [50]

    MORRIS S M, Jr. Arginine metabolism revisited. J Nutr,2016,146(12): 2579S–2586S. DOI: 10.3945/jn.115.226621

    [51]

    MURAD F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep,2004,24(4/5): 452–474. DOI: 10.1007/s10540-005-2741-8

    [52]

    OZMERIC N, ELGUN S, URAZ A. Salivary arginase in patients with adult periodontitis. Clin Oral Investig,2000,4(1): 21–24. DOI: 10.1007/s007840050108

    [53]

    GHEREN L W, CORTELLI J R, RODRIGUES E, et al. Periodontal therapy reduces arginase activity in saliva of patients with chronic periodontitis. Clin Oral Investig,2008,12(1): 67–72. DOI: 10.1007/s00784-007-0146-8

    [54]

    OZER L, ELGUN S, OZDEMIR B, et al. Arginine-nitric oxide-polyamine metabolism in periodontal disease. J Periodontol,2011,82(2): 320–328. DOI: 10.1902/jop.2010.100199

    [55] 孙继军, 王爱芹, 高艳. 精氨酸酶在大鼠实验性牙周炎牙周组织中的表达变化. 牙体牙髓牙周病学杂志,2012,22(8): 445–448.
    [56] 李慧, 李明贺, 汪洋, 等. L-精氨酸对实验性牙移动大鼠牙周组织CD133表达的影响. 中国实验诊断学,2019,23(3): 531–534. DOI: 10.3969/j.issn.1007-4287.2019.03.059
    [57]

    MORADALI M F, GHODS S, ANGELINI T E, et al. Amino acids as wetting agents: Surface translocation by Porphyromonas gingivalis. ISME J,2019,13(6): 1560–1574. DOI: 10.1038/s41396-019-0360-9

    [58]

    ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease. Nat Commun,2018,9(1): 3294. DOI: 10.1038/s41467-018-05470-4

    [59]

    WEISCHENDORFF S, KIELSEN K, NEDERBY M, et al. Reduced plasma amino acid levels during allogeneic hematopoietic stem cell transplantation are associated with systemic inflammation and treatment-related complications. Biol Blood Marrow Transplant,2019,25(7): 1432–1440. DOI: 10.1016/j.bbmt.2019.03.018

    [60]

    LI Z, ZHANG H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci,2016,73(2): 377–392. DOI: 10.1007/s00018-015-2070-4

    [61]

    HAMPELSKA K, JAWORSKA MM, BABALSKA ZL, et al. The role of oral microbiota in intra-oral halitosis. J Clin Med, 2020, 9(8): 2484[2021-11-19]. https://www.mdpi.com/2077-0383/9/8/2484. doi: 10.3390/jcm9082484.

    [62]

    SUZUKI N, YONEDA M, TAKESHITA T, et al. Induction and inhibition of oral malodor. Mol Oral Microbiol,2019,34(3): 85–96. DOI: 10.1111/omi.12259

    [63]

    FOO L H, BALAN P, PANG L M, et al. Role of the oral microbiome, metabolic pathways, and novel diagnostic tools in intra-oral halitosis: A comprehensive update. Crit Rev Microbiol,2021,47(3): 359–375. DOI: 10.1080/1040841X.2021.1888867

    [64]

    NOHNO K, YAMAGA T, KANEKO N, et al. Tablets containing a cysteine protease, actinidine, reduce oral malodor: a crossover study. J Breath Res, 2012, 6(1): 017107[2021-11-19]. https://iopscience.iop.org/article/10.1088/1752-7155/6/1/017107. doi: 10.1088/1752-7155/6/1/017107.

    [65]

    YANG M, VOUSDEN K H. Serine and one-carbon metabolism in cancer. Nat Rev Cancer,2016,16(10): 650–662. DOI: 10.1038/nrc.2016.81

    [66]

    MONTROSE D C, SAHA S, FORONDA M, et al. Exogenous and endogenous sources of serine contribute to colon cancer metabolism, growth, and resistance to 5-fluorouracil. Cancer Res,2021,81(9): 2275–2288. DOI: 10.1158/0008-5472.CAN-20-1541

    [67]

    SIM W C, YIN H Q, CHOI H S, et al. L-serine supplementation attenuates alcoholic fatty liver by enhancing homocysteine metabolism in mice and rats. J Nutr,2015,145(2): 260–267. DOI: 10.3945/jn.114.199711

    [68]

    ZHOU X, HE L, WU C, et al. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol Nutr Food Res, 2017, 61(11)[2021-11-19]. https://doi.org/10.1002/mnfr.201700262.

    [69]

    ZHANG H, HUA R, ZHANG B, et al. Serine alleviates dextran sulfate sodium-induced colitis and regulates the gut microbiota in mice. Front Microbiol, 2018, 9: 3062[2021-11-19]. https://doi.org/10.3389/fmicb.2018.03062.

    [70]

    WEI L, XU M, XIONG H. An update of knowledge on the regulatory role of Treg cells in apical periodontitis. Oral Dis,2021,27(6): 1356–1365. DOI: 10.1111/odi.13450

    [71]

    HUANG Y, ZHOU P, LIU S, et al. Metabolome and microbiome of chronic periapical periodontitis in permanent anterior teeth: a pilot study. BMC Oral Health, 2021, 21(1): 599[2021-11-19]. https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-021-01972-8. doi: 10.1186/s12903-021-01972-8.

    [72]

    MA E H, BANTUG G, GRISS T, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab,2017,25(2): 345–357. DOI: 10.1016/j.cmet.2016.12.011

  • 期刊类型引用(2)

    1. 杨佳鹏,谢梁震,王宇,常雪岩,刘静丹,韩德录,李宝华,周凌. 基于液相-质谱联用技术探究益气通窍饮对肺脾气虚型慢性鼻-鼻窦炎患者尿液代谢组学影响. 辽宁中医杂志. 2024(03): 1-5+221-222 . 百度学术
    2. 张钰,魏媛,杨卫东,朱雅男. 猛性龋相关牙菌斑生物膜及其代谢特征的研究进展. 北京口腔医学. 2024(05): 372-375 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1536
  • HTML全文浏览量:  390
  • PDF下载量:  441
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-02-13
  • 录用日期:  2022-02-15
  • 网络出版日期:  2022-03-21
  • 发布日期:  2022-03-19

目录

/

返回文章
返回