Obesity Combined with Chronic Restraint Stress-Induced Hypertension in Mice Is Associated with the Damage of Noradrenergic Neurons in Nucleus Tractus Solitarii
-
摘要:目的 探讨肥胖伴慢性束缚应激(chronic restraint stress, CRS)是否致小鼠血压升高及其与孤束核中间部(iNTS)损伤的关系。方法 制作CRS小鼠模型,将51只小鼠分为低脂非束缚组(LF组)、低脂束缚组(LS组)、高脂非束缚组(HF组)、高脂束缚组(HS组);7 d束缚+3 d自由活动为一个周期,共4个周期(40 d);每个周期中第9天时检测小鼠体质量、并测量动脉收缩压,实验第40天时处死各组小鼠后取脑组织行免疫组织化学染色及免疫印迹检测胶质纤维状酸性蛋白(glial fibrillary acidic protein, GFAP)、酪氨酸羟化酶(tyrosine hydroxylase, TH)表达,取附睾脂肪垫免疫印迹检测血管内皮生长因子A(vascular endothelial growth factor, VEGFA)蛋白表达(代表脂肪组织血管密度)。结果 在第40天时,HS组小鼠动脉收缩压明显高于其他三组小鼠,高脂喂养组(HF组和HS组)体质量增长明显;各组小鼠VEGFA蛋白表达差异无统计学意义;束缚组(LS组和HS组)小鼠脑组织iNTS星形胶质细胞活化,HS组iNTS TH表达减少;HF组、LS组小鼠血压均无异常变化;HS组血压普遍升高,其中37.5%小鼠出现高血压(动脉收缩压≥140 mmHg,1 mmHg=0.133 kPa)。结论 肥胖伴慢性束缚应激可致小鼠动脉血压升高,且其机制与孤束核去甲肾上腺素能神经元损伤有关。Abstract:Objective To investigate whether obesity combined with chronic restraint stress (CRS) can increase blood pressure in mice and its relationship with the damage of the intermediate part of the nucleus tractus solitarius (iNTS).Methods The CRS mouse model was constructed, and 51 mice were assigned to four groups, low-fat diet non-restraint group (LF group), low-fat diet restraint group (LS group), high-fat diet non-restraint group (HF group), and high-fat diet restraint group (HS group). Interventions were carried out in four cycles (over the course of 40 consecutive days), with each cycle consisting of 7 days of restraint and 3 days of free movement. The body weight and the arterial systolic blood pressure of the mice were measured on the day 9 of every cycle. The mice were sacrificed on day 40 and the brain tissues of the mice were collected afterwards in order to perform immunohistochemical staining and Western blot to examine the expression of glial fibrillary acidic protein (GFAP) and tyrosine hydroxylase (TH). The protein expression of vascular endothelial growth factor A (VEGFA) was examined with Western blot on epididymal fat pad to assess the vascular density of lipid tissue.Results On day 40, the arterial systolic pressure of mice in HS group was significantly higher than that of mice in the three other groups. Body mass of high-fat diet group (HF group and HS group) increased significantly. Mice in the four groups did not present significant difference in VEGFA protein expression. INTS astrocytes were activated in the brain of mice in the restraint groups (LS group and HS group), and iNTS TH expression was decreased in HS group. Mice in HF group and LS group did not show abnormal changes in their blood pressure. Blood pressure of mice in the HS group generally rose, and hypertension (arterial systolic blood pressure ≥140 mmHg, 1 mmHg=0.133 kPa) was observed in 37.5% of the mice in this group.Conclusion Obesity combined with CRS may cause an increase in arterial blood pressure in mice, the mechanism of which may be related to the damage of noradrenergic neurons in the nucleus tractus solitarius.
-
Keywords:
- Chronic restraint stress /
- High-fat diet /
- Noradrenergic /
- Neuron /
- Nucleus tractus solitarius
-
高血压因其高发病率、高致残率和高致死率,是我国目前最严重的公共卫生问题之一[1]。高血压是一种多因素疾病[2],最新的高血压指南称高血压的危险因素有:糖尿病、肥胖、高尿酸血症、高心理社会压力等[3]。无论是成人还是儿童,已证实肥胖与高血压之间存在紧密的联系[1-2]。公共卫生调查数据显示,肥胖者常常表现出更高水平动态血压,受试者平均动脉压与体质量指数(BMI)呈线性正相关[4]。因此,肥胖导致高血压的机制是一个亟待阐明的问题。
我们曾经猜测,肥胖所产生的新生脂肪需要额外血供,这势必会增加心输出量从而导致血压升高。但在预实验中我们用高脂饲养小鼠3个月致其肥胖后,发现血压并未发生变化。PALEI与SPRADLEY也报道,单纯的肥胖因素并不能使血压升高[5-6]。这可能是因为血压复杂的调节机制能够在相当程度上维持其相对稳定,一旦一个或多个环节失衡到无法代偿,才会导致高血压。孤束核(nucleus tractus solitarius, NTS)是中枢神经系统中重要的感觉神经核团,它通过其A2区去甲肾上腺素能纤维作用于室旁核而产生减压效应,在中枢神经系统血压调控的减压反射中发挥重要作用[7]。有临床病案报道,第四脑室肿瘤压迫NTS区的患者出现血压异常升高[8]。我们前期研究发现,慢性束缚应激(chronic restraint stress, CRS)模型可以导致大鼠出现NTS神经元凋亡[9]。因此本实验拟采用CRS损伤肥胖小鼠NTS神经元,观察小鼠动脉血压的改变,以探寻NTS神经元对肥胖伴慢性应激小鼠血压的调节与控制,为肥胖、压力致高血压发生的研究提供一个新的视角。
1. 材料和方法
1.1 实验动物与分组
10周龄健康雄性KM小鼠〔体质量(43.6±3.6) g,静息动脉收缩压(110.2±7.1) mmHg,1 mmHg=0.133 kPa〕51只,购自成都达硕生物科技有限公司。饲养环境为12 h昼/12 h夜光照,自由饮水和采食。非束缚期间室温(22±2) ℃,湿度60%±5%。笼具尺寸475 mm×350 mm×200 mm,每笼饲养4只。51只小鼠随机分为4组:低脂非束缚组(LF组)9只,饲喂低脂对照饲料,不进行束缚,仅在束缚组束缚期间禁食禁饮;低脂束缚组(LS组)9只,饲喂低脂对照饲料,进行束缚;高脂非束缚组(HF组)17只,饲喂高脂饲料,不进行束缚,仅在束缚组束缚期间禁食禁饮;高脂束缚组(HS组)16只,饲喂高脂饲料,进行束缚。低脂对照饲料(TP23302)与高脂饲料(TP23300)购自南通特洛菲饲料科技有限公司。本研究按照我国《实验动物福利伦理审查指南(GB/T 35892-2018)》要求,规范落实实验动物福利伦理。
1.2 CRS模型制作
取51只小鼠制作CRS模型[10]。每日0:00 am至6:00 am束缚6 h,束缚期间室温16~18 ℃;连续束缚7 d后再自由活动3 d为1个周期,共4个周期(40 d)。非束缚的对照小鼠与束缚小鼠同时放入束缚器,但随后立即取出任其自由活动。4个周期结束后处死小鼠取材,实验流程如图1所示。
1.3 小鼠动脉收缩压测量[11]及体质量测量
每个周期中第9天时使用BP-100A全自动大小鼠无创血压测量系统(成都泰盟软件有限公司)测量小鼠动脉收缩压,37 ℃,每只小鼠于测量前静息15 min,测量5次取平均值。束缚组小鼠于自由活动周期内进行血压测量,非束缚组小鼠同时间点进行血压测量。每周使用电子秤监测小鼠体质量。
1.4 免疫组化染色检测胶质纤维状酸性蛋白(glial fibrillary acidic protein, GFAP)和酪氨酸羟化酶(tyrosine hydroxylase, TH)的表达
5%戊巴比妥钠(45 mg/kg)腹腔注射麻醉小鼠,体积分数为4%中性缓冲多聚甲醛经心灌注固定,取脑组织用相同固定液浸泡固定过夜。标本常规石蜡包埋,行6 μm切片。按SABC程序(SPN-9001,北京中杉金桥生物技术有限公司)行免疫组织化学染色,DAB显色。GFAP特异地表达于中枢神经系统星形胶质细胞胞质内,可以作为星形胶质细胞特异性标志物 。第一抗体分别为:兔源抗GFAP单克隆抗体(1∶400,ab68428,Abcam公司),兔源抗TH(去甲肾上腺素神经元的标志物)单克隆抗体(1∶500,ab220218,Abcam公司)。观察位置如图2所示。GFAP免疫组化染色胞质呈棕黄色为阳性结果,TH免疫组化染色胞质呈棕黄色为阳性结果。在Precipoint M8 显微切片扫描系统下拍照并通过ImagePro Plus6.0分析平均光密度(mean density, MD)值,MD=积分光密度(integral optical density, IOD)/面积。
图 2 小鼠孤束核定位图Figure 2. The location of the nucleus tractus solitariusA: Schematic diagram of mouse medulla coronal section (modified from Paxinos and Franklin’s mouse brain Atlas)[12]; blue circle: The observation area of the nucleus tractus solitarius; the number represents the distance from the bregma; 4V: The fourth ventricle; AP: Last area of medulla oblongata; CC: Central canal. B: Schematic diagram of GFAP staining of mouse medulla coronal section, antiauricular line −3.52 mm, bregma −7.32 mm; → dotted line shows nucleus tractus solitarius.1.5 免疫印迹检测GFAP、TH和血管内皮生长因子A(vascular endothelial growth factor A, VEGFA)蛋白表达
颈椎脱臼处死各组小鼠后取脑NTS组织与附睾脂肪垫,裂解脑组织与脂肪组织并提取蛋白,电泳、转膜、封闭,加入第一抗体4 ℃孵育过夜,洗膜后加入第二抗体室温2 h,ECL化学发光试剂盒(Beyotime,P0018)显色,凝胶成像系统扫描条带,以ImageJ软件进行条带分析,计算各目的蛋白与GAPDH的灰度值比值作为其相对表达量。第一抗体分别为:兔源抗GFAP单克隆抗体(1∶5 000,ab68428,Abcam公司),兔源抗TH单克隆抗体(1∶5 000,ab220218,Abcam公司),兔源抗VEGFA单克隆抗体(1∶10 000,ab52917,Abcam公司),鼠源抗GAPDH单克隆抗体(1∶5 000,KC5G4,Aksomics公司)。第二抗体分别为:辣根过氧化物酶标记的山羊抗兔第二抗体(中杉金桥,ZB-2301,1∶5 000),辣根过氧化物酶标记的山羊抗小鼠第二抗体(Santa Cruze,SC-2005,1∶2 000)。
1.6 统计学方法
结果以
$ \bar x $ ±s表示,利用软件Prism 8进行统计学分析。正态分布性与方差齐性通过Shapiro-Wilk检验和Brown-Forsythe检验。若方差齐采用单因素方差分析,方差不齐采用Brown-Forsythe and Welch ANOVA检验。组间两两比较采用Bonferroni修正。P<0.05为差异有统计学意义。2. 结果
2.1 各组小鼠动脉收缩压变化
于束缚周期间隙测量小鼠动脉收缩压,结果如图3所示,从实验第2周期末开始,HS组小鼠动脉收缩压便逐渐升高,及至第4周期末,HS组小鼠动脉收缩压已高达(132.7±13.3) mmHg,高于HF组、LS组及LF组(P<0.05),而后3组小鼠动脉收缩压差异无统计学意义。以动脉收缩压大于140 mmHg为高血压[13],在第4周期末,HS组中有6只小鼠(37.5%)出现高血压,HF组中有1只小鼠(5.9%)出现高血压,LS组与LF组中均未出现高血压小鼠。
2.2 各组小鼠体质量变化
由图4可见,从实验第2周期开始,高脂饲料喂养小鼠(HS组与HF组)体质量增长程度就大于低脂饲料喂养小鼠(LF组与LS组)(P<0.01),第4周期差异更为明显(P<0.000 1),相同饲喂条件下小鼠体质量差异无统计学意义。
2.3 各组小鼠NTS中星形胶质细胞的变化
束缚组小鼠NTS中观察到明显的GFAP阳性细胞聚集(图5A),束缚组与非束缚相比(HS组 vs. HF组,LS组 vs. LF组)平均光密度增加(P<0.05)(图5B);Western blot结果显示,束缚组NTS中GFAP相对表达量高于非束缚组(P<0.000 1)(图5C),与免疫组化结果一致。
2.4 各组小鼠脂肪血管密度的变化
Western blot结果显示,各组小鼠附睾脂肪垫VEGFA蛋白表达量差异无统计学意义(P>0.05)(图6)。
图 5 各组NTS中GFAP表达Figure 5. GFAP protein expression in NTS of each groupA: GFAP immunohistochemical staining results of NTS sections of mice in each group. Hematoxylin counterstain, section taken from the coronal plane, antiauricular line −3.52 mm, bregma −7.32 mm; → the dotted line shows the middle part of the solitary nucleus. B: The statistical results of the average optical density of the intermediate part of NTS GFAP immunohistochemistry in each group of mice, LF group (n=9), LS group (n=9), HF group (n=11), HS group (n=10), *P<0.05. C: GFAP protein expression in NTS detected by Western blot in each group (n=6), ****P<0.000 1.2.5 各组小鼠NTS中TH能神经元的变化
高脂束缚组小鼠NTS中TH免疫反应平均强度降低(图7A,图7B),与其他3组相比差异均有统计学意义(P<0.05)。Western blot结果显示,高脂束缚组小鼠NTS中TH蛋白表达量低于其他3组(P<0.05)(图7C),与免疫组化结果一致。
图 7 各组NTS中TH蛋白表达Figure 7. TH protein expression in NTS of each groupA: TH immunohistochemical staining results in the intermediate part of NTS of each group of mice, the section position is the same as Fig 5A; B: The statistical results of the TH immunohistochemical average optical density of the intermediate part of NTS slices in each group, LF group (n=7), LS group (n=7), HF group (n=8), HS group (n=6), *P<0.05, ***P<0.001; C: Western blot was done to determine the TH protein expression in NTS of each group (n=6), ****P<0.0001.3. 讨论
本实验采用慢性束缚的方法对小鼠进行慢性应激刺激,使得小鼠孤束核联合亚核去甲肾上腺素能神经元受损,同时施加高脂饮食饲养,使得小鼠短时间内增长大量脂肪,产生新生血管,最终导致小鼠动脉收缩压明显升高,其中37.5%的小鼠出现高血压。而单纯束缚或者高脂喂养并未使小鼠血压异常改变。该实验结果表明,单纯高脂饲养致肥胖或单纯CRS的确难以获得高血压小鼠,而二者联合应用不失为一种获得高血压小鼠(尽管比例不够高),并进行深入机制研究的简单易行的实验方法;孤束核联合亚核去甲肾上腺素能神经元损伤与该实验条件下高血压的发生相关,这为后续机制研究提供了一条明确的线索。同时结果也提示人们,避免高危因素叠加也许可以预防高血压发生。
本实验发现高脂饮食喂养小鼠在40 d里约增长了自身初始体质量的1/3,其中7%应该是血容量[14],显然高脂组小鼠血容量有所增加。结合VEGFA实验结果,虽然各组小鼠脂肪内血管密度未见明显变化,但高脂饮食喂养小鼠有更高的体质量,更多的脂肪组织,因此其脂肪中的血管总数会更多,外周血管带来的外周阻力也会增高。如果没有其他因素的调控,在血容量与外周阻力都增加的情况下,小鼠血压应该会增高。然而,在本实验条件下得到的结果表明,肥胖小鼠血压并未见升高。这可能与机体内存在的多种血压调控机制作用有关。包括:①血压-容积调节[2];②CNS对血管阻力的快速控制[15];③肾素-血管紧张素-醛固酮系统的活性调节[16]。这些机制的显著特点是它们能够在生理范围内维持血压在相对稳定的状态,一旦一个或多个环节失衡到无法代偿,就会导致高血压。而公共卫生调查发现的“在人类中肥胖者具有更高水平的动态血压”与之也并不矛盾,肥胖虽然是高血压的危险因素,由于存在血压稳态调控机制,单纯肥胖并不一定就能直接使血压升高。当然,也不排除长期、严重肥胖诱发高血压的可能。
在血压的调控中,中枢神经系统的调节是最快捷,是不容忽视的一环。这些血压调节核团分布于下丘脑与脑干中,包括下丘脑的室旁核、弓状核、下丘脑背内侧核、正中视前核,脑干的NTS、延髓腹外侧区的头尾端[15]。星形胶质细胞是中枢神经系统中主要的胶质细胞成分,中枢神经组织损伤时会出现反应性星形胶质细胞增生,因此反应性星形胶质细胞增生是脑病变组织可靠且敏感的标志[17]。GFAP是胶质纤维酸性蛋白,是星形胶质细胞活化的标志物,在脑内GFAP的表达量增多可认为是星形胶质细胞活化增多的表现[18],其活化即表示该部位发生过受损修复。在40 d的周期性束缚应激刺激后,束缚组小鼠NTS出现了星形胶质细胞活化现象,星形胶质细胞堆积且GFAP表达量升高,这表明有星形胶质细胞增生。结合本课题组前期研究发现的CRS可以诱发小鼠NTS内细胞凋亡增加[9],提示束缚应激可以对小鼠NTS造成损伤;但束缚低脂组小鼠血压并无明显变化,提示仅NTS的损伤虽然可能影响孤束核(NTS)-延髓腹外侧区尾端(CVLM)-延髓腹外侧区头端(RVLM)血压调控通路,但未直接使小鼠血压出现异常,进一步证实NTS血压反射调节是维持血压稳定的神经调节方式,并不主动上调或者下调血压[19]。
本实验还发现,在既肥胖又有NTS损伤的高脂束缚组小鼠中,其动脉收缩压从实验第2周期末开始就一路攀升,明显高于其他3组,发生高血压的比例也更高。交感神经系统在中枢神经内通过去甲肾上腺素能神经元发生作用。去甲肾上腺素神经元的特征是对多巴胺合成的限速酶TH出现阳性免疫标记反应[20]。本实验进一步的观察发现,这些小鼠NTS内TH蛋白表达减少,结合前述星形胶质细胞活化现象(表明中枢神经组织损伤),提示NTS内参与中枢神经系统减压效应的去甲肾上腺素能神经元受到损伤。因此高脂束缚组小鼠血压升高可以解释为肥胖与CRS的累加作用:肥胖使小鼠外周阻力升高及血容量增多,CRS造成小鼠NTS去甲肾上腺素能神经元损伤影响血压调控中心的功能,最终血压调节失控,小鼠出现高血压。
在前期实验[9]中,我们发现CRS会引起大鼠脑干内神经元凋亡,集中在孤束核区域,延髓腹外侧区并无明显凋亡现象,提示CRS并未直接损伤经典的血压调控中枢;且束缚应激使血清皮质醇水平升高是一个急性效应,束缚一个周期即第10天后就恢复正常(数据未发表)。因此本实验选择使用CRS刺激模拟孤束核损伤,观察肥胖小鼠在孤束核损伤的情况下血压的变化情况,避免了上述经典血压调控中枢受损和肾上腺激素异常影响血压的可能性。
综上所述,高脂饮食伴CRS损伤小鼠NTS可导致小鼠高血压,与iNTS内去甲肾上腺素能神经元损伤有关。我们曾试图损毁iNTS进一步研究iNTS内神经元与小鼠血压的关系,但针刺损毁小鼠iNTS后小鼠无法从麻醉中苏醒,即使仅损毁单侧iNTS都无法保障小鼠存活,无法进行后续实验操作。因此关于iNTS如何参与血压的精细调控,以及CRS伴肥胖对脑损伤的机制,尚需进一步研究。
* * *
利益冲突 所有作者均声明不存在利益冲突
-
图 2 小鼠孤束核定位图
Figure 2. The location of the nucleus tractus solitarius
A: Schematic diagram of mouse medulla coronal section (modified from Paxinos and Franklin’s mouse brain Atlas)[12]; blue circle: The observation area of the nucleus tractus solitarius; the number represents the distance from the bregma; 4V: The fourth ventricle; AP: Last area of medulla oblongata; CC: Central canal. B: Schematic diagram of GFAP staining of mouse medulla coronal section, antiauricular line −3.52 mm, bregma −7.32 mm; → dotted line shows nucleus tractus solitarius.
图 5 各组NTS中GFAP表达
Figure 5. GFAP protein expression in NTS of each group
A: GFAP immunohistochemical staining results of NTS sections of mice in each group. Hematoxylin counterstain, section taken from the coronal plane, antiauricular line −3.52 mm, bregma −7.32 mm; → the dotted line shows the middle part of the solitary nucleus. B: The statistical results of the average optical density of the intermediate part of NTS GFAP immunohistochemistry in each group of mice, LF group (n=9), LS group (n=9), HF group (n=11), HS group (n=10), *P<0.05. C: GFAP protein expression in NTS detected by Western blot in each group (n=6), ****P<0.000 1.
图 7 各组NTS中TH蛋白表达
Figure 7. TH protein expression in NTS of each group
A: TH immunohistochemical staining results in the intermediate part of NTS of each group of mice, the section position is the same as Fig 5A; B: The statistical results of the TH immunohistochemical average optical density of the intermediate part of NTS slices in each group, LF group (n=7), LS group (n=7), HF group (n=8), HS group (n=6), *P<0.05, ***P<0.001; C: Western blot was done to determine the TH protein expression in NTS of each group (n=6), ****P<0.0001.
-
[1] ZHENG L, DAI Y, FU P, et al. Secular trends of hypertension prevalence based on 2017 ACC/AHA and 2018 Chinese hypertension guidelines: Results from CHNS data (1991−2015). J Clin Hypertens (Greenwich),2021,23(1): 28–34. DOI: 10.1111/jch.14060
[2] ROSSIER B C, BOCHUD M, DEVUYST O. The hypertension pandemic: An evolutionary perspective. Physiology (Bethesda),2017,32(2): 112–125. DOI: 10.1152/physiol.00026.2016
[3] UNGER T, BORGHI C, CHARCHAR F, et al. 2020 international society of hypertension global hypertension practice guidelines. Hypertension,2020,75(6): 1334–1357. DOI: 10.1161/Hypertensionaha.120.15026
[4] NEELAND I J, POIRIER P, DESPRES J P. Cardiovascular and metabolic heterogeneity of obesity clinical challenges and implications for management. Circulation,2018,137(13): 1391–1406. DOI: 10.1161/Circulationaha.117.029617
[5] PALEI A C, SPRADLEY F T, GRANGER J P. Role of nitric oxide synthase on blood pressure regulation and vascular function in pregnant rats on a high-fat diet. Am J Hypertens,2017,30(3): 240–248. DOI: 10.1093/ajh/hpw153
[6] SPRADLEY F T, PALEI A C, GRANGER J P. Differential body weight, blood pressure and placental inflammatory responses to normal versus high-fat diet in melanocortin-4 receptor-deficient pregnant rats. J Hypertens,2016,34(10): 1998–2007. DOI: 10.1097/HJH.0000000000001059
[7] 顾蕴辉. 脑干升压和降压区调节血压的中枢机制及其与延髓头端腹外侧区的机能联系. 生理科学进展,1994(3): 205–211. DOI: CNKI:SUN:SLKZ.0.1994-03-002 [8] CUTSFORTH-GREGORY J K, BENARROCH E E. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology,2017,88(12): 1187–1196. DOI: 10.1212/WNL.0000000000003751
[9] 毕文杰, 郑翔. 慢性束缚应激致大鼠持续性高血糖症与孤束核损伤有关. 解剖学报,2019,50(4): 423–430. DOI: 10.16098/j.issn.0529-1356.2019.04.004 [10] 梁冰, 郑翔, 夏卫维, 等. 慢性束缚应激造模及观测高血糖相关指标的方法探索. 四川大学学报(医学版),2013,44(3): 470–475. DOI: 10.13464/j.scuxbyxb.2013.03.007 [11] WANG Y, THATCHER S E, CASSIS L A. Measuring blood pressure using a noninvasive tail cuff method in mice. Methods Mol Biol,2017,1614: 69–73. DOI: 10.1007/978-1-4939-7030-8_6
[12] ABEGAZ B, DAVERN P J, JACKSON K L, et al. Cardiovascular role of angiotensin type1A receptors in the nucleus of the solitary tract of mice. Cardiovasc Res,2013,100(2): 181–191. DOI: 10.1093/cvr/cvt183
[13] 周光兴主编. 医学实验动物学. 上海:复旦大学出版社,2012: 276. [14] SLUITER W, OOMENS L W, BRAND A, et al. Determination of blood volume in the mouse with 51chromium-labelled erythrocytes. J Immunol Methods,1984,73(1): 221–225. DOI: 10.1016/0022-1759(84)90046-2
[15] MANUEL J, FARBER N, GERLACH D A, et al. Deciphering the neural signature of human cardiovascular regulation. Elife, 2020, 9: e55316[2021-09-18]. https://elifesciences.org/articles/55316.
[16] AMES M K, ATKINS C E, PITT B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med,2019,33(2): 363–382. DOI: 10.1111/jvim.15454
[17] SOFRONIEW M V, VINTERS H V. Astrocytes: Biology and pathology. Acta Neuropathol,2010,119(1): 7–35. DOI: 10.1007/s00401-009-0619-8
[18] BRENNER M. Role of GFAP in CNS injuries. Neurosci Lett,2014,565: 7–13. DOI: 10.1016/j.neulet.2014.01.055
[19] ZANUTTO B S, VALENTINUZZI M E, SEGURA E T. Neural set point for the control of arterial pressure: role of the nucleus tractus solitarius. Biomed Eng Online, 2010, 9: 4[2021-09-18]. https:lin//doi.org/10.1186/1475-925X-9-4.
[20] RINAMAN L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol,2011,300(2): R222–R235. DOI: 10.1152/ajpregu.00556.2010
-
期刊类型引用(3)
1. 陈杰,周锦真,林双,周友栩,周守群. 经脐入路腹腔镜经腹腹膜前腹股沟疝修补术治疗腹股沟疝对围术期指标及并发症的影响. 吉林医学. 2024(08): 1849-1852 . 百度学术
2. 张红玲. 低剂量艾司氯胺酮对全膝关节置换术患者血流动力学及术后应激的影响研究. 药品评价. 2023(02): 217-220 . 百度学术
3. 都梦岩,吴威,李威莹,姜晓西,孟岩,杨关林,张会永. 高血压动物模型的造模方法与评价. 世界科学技术-中医药现代化. 2023(10): 3254-3263 . 百度学术
其他类型引用(0)