欢迎来到《四川大学学报(医学版)》

肠道菌群在免疫检查点抑制剂治疗肿瘤中作用的研究进展

武梦芮 汤沐亚 郑博豪 周圣涛

武梦芮, 汤沐亚, 郑博豪, 等. 肠道菌群在免疫检查点抑制剂治疗肿瘤中作用的研究进展[J]. 四川大学学报(医学版), 2021, 52(5): 735-739. doi: 10.12182/20210960501
引用本文: 武梦芮, 汤沐亚, 郑博豪, 等. 肠道菌群在免疫检查点抑制剂治疗肿瘤中作用的研究进展[J]. 四川大学学报(医学版), 2021, 52(5): 735-739. doi: 10.12182/20210960501
WU Meng-rui, TANG Mu-ya, ZHENG Bo-hao, et al. Tracking Research Progress in the Modulatory Role of Gut Microbiome in Immune Checkpoint Inhibitors Applied in Cancer Treatment[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 735-739. doi: 10.12182/20210960501
Citation: WU Meng-rui, TANG Mu-ya, ZHENG Bo-hao, et al. Tracking Research Progress in the Modulatory Role of Gut Microbiome in Immune Checkpoint Inhibitors Applied in Cancer Treatment[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 735-739. doi: 10.12182/20210960501

肠道菌群在免疫检查点抑制剂治疗肿瘤中作用的研究进展

doi: 10.12182/20210960501
基金项目: 国家自然科学基金(No.81822034)资助
详细信息
    通讯作者:

    E-mail:shengtaozhou@scu.edu.cn

Tracking Research Progress in the Modulatory Role of Gut Microbiome in Immune Checkpoint Inhibitors Applied in Cancer Treatment

More Information
  • 摘要: 近年来,免疫疗法作为抗肿瘤新兴治疗方法,在实体瘤和血液系统肿瘤中均展现出极大的治疗潜力。越来越多的临床前和临床证据将肠道微生物组成与免疫检查点抑制剂抗肿瘤疗效及不良反应联系起来。本文对肠道微生物在不同免疫检查点抑制剂抗肿瘤治疗中的调控作用进行综述,并对目前研究的局限性及进一步临床策略的发展进行展望。
  • [1] VASAN N, BASELGA J, HYMAN D M. A view on drug resistance in cancer. Nature,2019,575(7782): 299–309. doi: 10.1038/s41586-019-1730-1
    [2] COUZIN-FRANKEL J. Breakthrough of the year 2013. Cancer Immunother Sci,2013,342(6165): 1432–1433. doi: 10.1126/science.342.6165.1432
    [3] FINCK A, GILL S I, JUNE C H. Cancer immunotherapy comes of age and looks for maturity. Nature Commun,2020,11(1): 1–4. doi: 10.1038/s41467-020-17140-5
    [4] TOPALIAN S L, DRAKE C G, PARDOLL D M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell,2015,27(4): 450–461. doi: 10.1016/j.ccell.2015.03.001
    [5] O'DONNELL J S, LONG G V, SCOLYER R A, et al. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev,2017,52: 71–81. doi: 10.1016/j.ctrv.2016.11.007
    [6] SENDER R, FUCHS S, MILO R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol,2016,14(8): e1002533[2021-06-14]. https://doi.org/10.1371/journal.pbio.1002533. doi: 10.1371/journal.pbio.1002533
    [7] OH J, BYRD A L, PARK M, et al. Temporal stability of the human skin microbiome. Cell,2016,165(4): 854–866. doi: 10.1016/j.cell.2016.04.008
    [8] DZUTSEV A, BADGER J H, PEREZ-CHANONA E, et al. Microbes and cancer. Annu Rev Immunol,2017,35: 199–228. doi: 10.1146/annurev-immunol-051116-052133
    [9] ZITVOGEL L, GALLUZZI L, VIAUD S, et al. Cancer and the gut microbiota: An unexpected link. Sci Transl Med,2015,7(271): 271ps1[2021-06-14]. https://doi.org/10.1126/scitranslmed.3010473. doi: 10.1126/scitranslmed.3010473
    [10] ARTHUR J C, PEREZ-CHANONA E, MÜHLBAUER M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science,2012,338(6103): 120–123. doi: 10.1126/science.1224820
    [11] YU L X, SCHWABE R F. The gut microbiome and liver cancer: Mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol,2017,14(9): 527–539. doi: 10.1038/nrgastro.2017.72
    [12] CHAPUT N, LEPAGE P, COUTZAC C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol,2017,28(6): 1368–1379. doi: 10.1093/annonc/mdx108
    [13] MATSON V, FESSLER J, BAO R, et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science,2018,359(6371): 104–108. doi: 10.1126/science.aao3290
    [14] GOPALAKRISHNAN V, SPENCER C N, NEZI L, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science,2018,359(6371): 97–103. doi: 10.1126/science.aan4236
    [15] ROUTY B, LE CHATELIER E, DEROSA L, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science,2018,359(6371): 91–97. doi: 10.1126/science.aan3706
    [16] HODI F S, CHESNEY J, PAVLICK A C, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol,2016,17(11): 1558–1568. doi: 10.1016/S1470-2045(16)30366-7
    [17] LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med,2015,373(1): 23–34. doi: 10.1056/NEJMoa1504030
    [18] SIVAN A, CORRALES L, HUBERT N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science,2015,350(6264): 1084–1089. doi: 10.1126/science.aac4255
    [19] JIN Y, DONG H, XIA L, et al. The diversity of gut microbiome is associated with favorable responses to anti–programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol,2019,14(8): 1378–1389. doi: 10.1016/j.jtho.2019.04.007
    [20] KATAYAMA Y, YAMADA T, SHIMAMOTO T, et al. The role of the gut microbiome on the efficacy of immune checkpoint inhibitors in Japanese responder patients with advanced non-small cell lung cancer. Transl Lung Cancer Res,2019,8(6): 847–853. doi: 10.21037/tlcr.2019.10.23
    [21] ZHENG Y, WANG T, TU X, et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J Immunother Cancer,2019,7(1): 193. doi: 10.1186/s40425-019-0650-9
    [22] VÉTIZOU M, PITT J M, DAILLÈRE R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science,2015,350(6264): 1079–1084. doi: 10.1126/science.aad1329
    [23] DEROSA L, ROUTY B, ENOT D, et al. Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. J Clin Oncol,2017,35(6_suppl): 462. doi: 10.1200/JCO.2017.35.6_suppl.462
    [24] SALGIA N J, BERGEROT P G, MAIA M C, et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti–PD-1 immune checkpoint inhibitors. Eur Urol,2020,78(4): 498–502. doi: 10.1016/j.eururo.2020.07.011
    [25] MAGER L F, BURKHARD R, PETT N, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science,2020,369(6510): 1481–1489. doi: 10.1126/science.abc3421
    [26] CHAO M P, ALIZADEH A A, TANG C, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell,2010,142(5): 699–713. doi: 10.1016/j.cell.2010.07.044
    [27] CHAO M P, ALIZADEH A A, TANG C, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res,2011,71(4): 1374–1384. doi: 10.1158/0008-5472.Can-10-2238
    [28] XU M M, PU Y, HAN D, et al. Dendritic cells but not macrophages sense tumor mitochondrial dna for cross-priming through signal regulatory protein α signaling. Immunity,2017,47(2): 363–373.e5. doi: 10.1016/j.immuni.2017.07.016
    [29] ADVANI R, FLINN I, POPPLEWELL L, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma. N Engl J Med,2018,379(18): 1711–1721. doi: 10.1056/NEJMoa1807315
    [30] BRIERLEY C K, STAVES J, ROBERTS C, et al. The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia. Transfusion,2019,59(7): 2248–2254. doi: 10.1111/trf.15397
    [31] SHI Y, ZHENG W, YANG K, et al. Intratumoral accumulation of gut microbiota facilitates CD47-based immunotherapy via STING signaling. J Exp Med,2020,217(5): e20192282[2021-06-14]. https://doi.org/10.1084/jem.20192282. doi: 10.1084/jem.20192282
    [32] LIU X, PU Y, CRON K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med,2015,21(10): 1209–1215. doi: 10.1038/nm.3931
    [33] BORODY T J, WARREN E F, LEIS S M, et al. Bacteriotherapy using fecal flora: Toying with human motions. J Clin Gastroenterol,2004,38(6): 475–483. doi: 10.1097/01.mcg.0000128988.13808.dc
    [34] HIBBERD A A, LYRA A, OUWEHAND A C, et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol,2017,4(1): e000145[2021-06-14]. https://doi.org/10.1136/bmjgast-2017-000145. doi: 10.1136/bmjgast-2017-000145
    [35] DUBIN K, CALLAHAN M K, REN B, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun,2016,7(1): 1–8. doi: 10.1038/ncomms10391
    [36] DE CLERCQ N C, FRISSEN M N, DAVIDS M, et al. Weight gain after fecal microbiota transplantation in a patient with recurrent underweight following clinical recovery from anorexia nervosa. Psychother Psychosom,2019,88(1): 58–60. doi: 10.1159/000495044
    [37] WONG S H, ZHAO L, ZHANG X, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology,2017,153(6): 1621–1633.e6. doi: 10.1053/j.gastro.2017.08.022
    [38] LEY R E, BäCKHED F, TURNBAUGH P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A,2005,102(31): 11070–11075. doi: 10.1073/pnas.0504978102
    [39] WILES T J, JEMIELITA M, BAKER R P, et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol,2016,14(7): e1002517[2021-06-14]. https://doi.org/10.1371/journal.pbio.1002517. doi: 10.1371/journal.pbio.1002517
  • 加载中
计量
  • 文章访问数:  171
  • HTML全文浏览量:  40
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-06-15
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回