欢迎来到《四川大学学报(医学版)》

PS-PVP静电纺丝膜抑制牙龈卟啉单胞菌黏附的作用研究

国嘉 陈佳敏 李雨庆 周学东

国嘉, 陈佳敏, 李雨庆, 等. PS-PVP静电纺丝膜抑制牙龈卟啉单胞菌黏附的作用研究[J]. 四川大学学报(医学版), 2021, 52(5): 754-758. doi: 10.12182/20210960102
引用本文: 国嘉, 陈佳敏, 李雨庆, 等. PS-PVP静电纺丝膜抑制牙龈卟啉单胞菌黏附的作用研究[J]. 四川大学学报(医学版), 2021, 52(5): 754-758. doi: 10.12182/20210960102
GUO Jia, CHEN Jia-min, LI Yu-qing, et al. Study on the Effect of Polystyrene-Polyvinylpyrrolidone Electrospun Fibre in Inhibiting the Adhesion of Porphyromonas gingivalis[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 754-758. doi: 10.12182/20210960102
Citation: GUO Jia, CHEN Jia-min, LI Yu-qing, et al. Study on the Effect of Polystyrene-Polyvinylpyrrolidone Electrospun Fibre in Inhibiting the Adhesion of Porphyromonas gingivalis[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 754-758. doi: 10.12182/20210960102

PS-PVP静电纺丝膜抑制牙龈卟啉单胞菌黏附的作用研究

doi: 10.12182/20210960102
基金项目: 国家自然科学基金(No. 31870065)资助
详细信息
    通讯作者:

    E-mail:zhouxd@scu.edu.cn

Study on the Effect of Polystyrene-Polyvinylpyrrolidone Electrospun Fibre in Inhibiting the Adhesion of Porphyromonas gingivalis

More Information
  • 摘要:   目的  探究聚苯乙烯(PS)及PS-聚乙烯吡咯烷酮(PVP)静电纺丝材料对牙龈卟啉单胞菌黏附能力的影响。  方法  采用不锈钢针头及高压电场制备PS及PS-PVP静电纺丝材料;通过扫描电子显微镜观察不同材料表面的牙龈卟啉单胞菌生长黏附状态;通过菌落形成单位(colony forming unit, CFU)测定不同材料表面的牙龈卟啉单胞菌生物膜形成量的变化;通过改变静电纺丝材料表面的电荷性质测定材料表面电荷对牙龈卟啉单胞菌黏附能力的影响。  结果  扫描电镜结果显示,PS与PS-PVP均可形成直径0.2 μm的静电纺丝纤维。通过对24 h及48 h的生物膜进行扫描电镜和CFU计数,发现在两种材料表面,牙龈卟啉单胞菌的生物膜黏附量均较少(P<0.05)。在四丁基溴化铵(tetrabutylammonium bromide, TBAB)处理后,PS-PVP静电纺丝材料的表面电荷由负电转为正电,且表面细菌黏附量上升,与未处理的PS及PS-PVP相比差异有统计学意义(P<0.05)。  结论  PS及PS-PVP静电纺丝材料可有效降低牙龈卟啉单胞菌的黏附能力,且这种能力可能与材料表面电荷性质相关。
  • 图  1  两种不同材料静电纺丝膜的形态

    Figure  1.  The appearance of electrospun membranes of the two different materials

    A: PS electronspun fibre; B: PS-PVP electronspun fibre.

    图  2  不同介质表面的生物膜黏附情况

    Figure  2.  Adhesion of biofilm on the surface of different materials

    图  3  三种不同介质表面的活菌菌落计数

    Figure  3.  Colony forming units on the surface of the three different materials

    图  4  不同材料的表面电位差异

    Figure  4.  Surface potential of different materials

    图  5  不同表面电位的静电纺丝材料表面生物膜黏附情况

    Figure  5.  Biofilm adhesion on the surface of electrospun materials with different surface potentials

    A: Scanning electron microscope (48 h); B: Colony forming units.

  • [1] GRAZIANI F, GENNAI S, SOLINI A, et al. A systematic review and meta-analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes An update of the EFP-AAP review. J Clin Periodontol,2018,45(2): 167–187. doi: 10.1111/jcpe.12837
    [2] 冯希平. 中国居民口腔健康状况——第四次中国口腔健康流行病学调查报告: 2018年中华口腔医学会第十八次口腔预防医学学术年会. 西安, 2018.
    [3] SAKANAKA A, TAKEUCHI H, KUBONIWA M, et al. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb Pathog,2016,94: 42–47. doi: 10.1016/j.micpath.2015.10.003
    [4] MARK W J, ROSSETTI B J, RIEKEN C W, et al. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci U S A,2016,113(6): E791–E800. doi: 10.1073/pnas.1522149113
    [5] ABRANCHES J, ZENG L, KAJFASZ J K, et al. Biology of oral Streptococci. Microbiol Spectr,2018,6(5): 10.1128/microbiolspec.GPP3-0042-2018. doi: 10.1128/microbiolspec.GPP3-0042-2018
    [6] MATHEW A, VAQUETTE C, HASHIMI S, et al. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration. Adv Healthc Mater, 2017, 6(10)[2021-07-15]. https://doi.org/10.1002/adhm.201601345.
    [7] ZHAN F, SHENG F, YAN X, et al. Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: Surface modification of sliver nanoparticles. Int J Biol Macromol,2017,104(Pt A): 813–820. doi: 10.1016/j.ijbiomac.2017.06.114
    [8] KAFFASHI B, DAVOODI S, OLIAEI E. Poly(epsilon-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release. Int J Pharm,2016,508(1/2): 10–21. doi: 10.1016/j.ijpharm.2016.05.009
    [9] ZEIGER A S, HINTON B, VAN VLIET K J. Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces. Acta Biomater,2013,9(7): 7354–7361. doi: 10.1016/j.actbio.2013.02.035
    [10] KURAKULA M, KOTESWARA RAO G S N. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J, 2020, 136: 109919[2021-07-15]. https://doi.org/10.1016/j.eurpolymj.2020.109919.
    [11] NIU J, GUO J, DING R, et al. An electrospun fibrous platform for visualizing the critical pH point inducing tooth demineralization. J Mater Chem B,2019,7(27): 4292–4298. doi: 10.1039/C9TB00392D
    [12] TANG Z, LIANG D, CHENG M, et al. Effects of Porphyromonas gingivalis and its underlying mechanisms on Alzheimer-like Tau hyperphosphorylation in Sprague-Dawley rats. J Mol Neurosci,2021,71(1): 89–100. doi: 10.1007/s12031-020-01629-1
    [13] TANG B, GONG T, CUI Y, et al. Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. Int J Oral Sci,2020,12(1): 15. doi: 10.1038/s41368-020-0079-5
    [14] BOSTANCI N, BELIBASAKIS G N. Porphyromonas gingivalis: An invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett,2012,333(1): 1–9. doi: 10.1111/j.1574-6968.2012.02579.x
    [15] SINGHRAO S K, HARDING A, POOLE S, et al. Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer’s disease. Mediators Inflamm, 2015, 2015: 137357[2021-07-15]. https://doi.org/10.1155/2015/137357.
    [16] HIRAI K, YAMAGUCHI-TOMIKAWA T, EGUCHI T, et al. Identification and modification of Porphyromonas gingivalis cysteine protease, gingipain, ideal for screening periodontitis. Front Immunol, 2020,11: 1017[2021-09-02]. https://doi.org/10.3389/fimmu.2020.01017.
    [17] KUBONIWA M, HOUSER J R, HENDRICKSON E L, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol,2017,2(11): 1493–1499. doi: 10.1038/s41564-017-0021-6
    [18] EL-FIQI A, KIM J H, KIM H W. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl Mater Interfaces,2015,7(2): 1140–1152. doi: 10.1021/am5077759
    [19] CHEN X, LIU Y, MIAO L, et al. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int J Nanomedicine,2016,11: 3145–3158. doi: 10.2147/IJN.S104324
    [20] ZHI X, FANG H, BAO C, et al. The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials,2013,34(21): 5254–5261. doi: 10.1016/j.biomaterials.2013.03.024
    [21] TEODORESCU M, BERCEA M. Poly(vinylpyrrolidone)—A versatile polymer for biomedical and beyond medical applications. Polym Plast Technol Eng,2015,54(9): 923–943. doi: 10.1080/03602559.2014.979506
    [22] KHANAL A, NAKASHIMA K. Incorporation and release of cloxacillin sodium in micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide). J Control Release,2005,108(1): 150–160. doi: 10.1016/j.jconrel.2005.07.018
    [23] BASTAKOTI B P, LI Y, GURAGAIN S, et al. Synthesis of mesoporous transition-metal phosphates by polymeric micelle assembly. Chemistry,2016,22(22): 7463–7467. doi: 10.1002/chem.201600435
    [24] LI F, WEIR M D, CHEN J, et al. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater,2014,30(4): 433–441. doi: 10.1016/j.dental.2014.01.002
    [25] JUNTER G A, THEBAULT P, LEBRUN L. Polysaccharide-based antibiofilm surfaces. Acta Biomater,2016,30: 13–25. doi: 10.1016/j.actbio.2015.11.010
  • 加载中
图(5)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-08-26
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回