欢迎来到《四川大学学报(医学版)》

脂质代谢重编程与肝癌代谢应激

徐喆 袁克非

徐喆, 袁克非. 脂质代谢重编程与肝癌代谢应激[J]. 四川大学学报(医学版), 2021, 52(4): 561-565. doi: 10.12182/20210760506
引用本文: 徐喆, 袁克非. 脂质代谢重编程与肝癌代谢应激[J]. 四川大学学报(医学版), 2021, 52(4): 561-565. doi: 10.12182/20210760506
XU Zhe, YUAN Ke-fei. Lipid Metabolic Reprogramming and Metabolic Stress in Liver Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 561-565. doi: 10.12182/20210760506
Citation: XU Zhe, YUAN Ke-fei. Lipid Metabolic Reprogramming and Metabolic Stress in Liver Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 561-565. doi: 10.12182/20210760506

栏目: 综 述

脂质代谢重编程与肝癌代谢应激

doi: 10.12182/20210760506
基金项目: 国家自然科学基金(No. 82070644、No. 81972747、No. 81872004、No. 81770615、No. 81672882)和四川省科技计划项目(No. 2019YFQ0001)资助
详细信息
    通讯作者:

    E-mail:ykf13@163.com

Lipid Metabolic Reprogramming and Metabolic Stress in Liver Cancer

More Information
  • 摘要: 近期研究表明,肝癌所处的微环境对其生长和转移等过程有重要的调控作用。代谢重编程是肝癌细胞在缺糖、缺氧微环境造成的代谢应激状态下的适应性代谢改变,其中脂质代谢重编程是一个重要的组成部分。既往研究揭示了部分在肝癌细胞中代谢模式发生改变的脂质类型,同时在一定程度上阐明了这些脂质代谢重编程过程的生物学功能和调控机制。然而,目前仍有许多脂质代谢重编程过程没有得到深入解析,对其在肝癌发生发展过程中的作用和机制仍知之甚少。另外,如何通过靶向脂质代谢重编程中的关键调控因子达到治疗肝癌的目的,目前仍是转化医学研究的一大挑战。本文介绍了肝癌细胞中脂质的来源、脂质代谢重编程的主要功能,以及驱动脂质代谢重编程的因素,有望为未来通过调节或限制肝癌细胞脂质代谢重编程来治疗肝癌提供理论依据和潜在的候选靶点。
  • [1] 方颖. 去泛素化酶UCH37对肝癌复发的影响及其分子机制研究. 上海: 复旦大学, 2012.
    [2] 吴晗. 脂代谢在肝癌营养应激中的作用和调控机制. 上海: 第二军医大学, 2014.
    [3] KLAJER E, GARNIER L, GOUJON M, et al. Targeted and immune therapies among patients with metastatic renal carcinoma undergoing hemodialysis: A systemic review. Semin Onco,2020,47(2/3): 103–116. doi: 10.1053/j.seminoncol.2020.05.001
    [4] 吴金鼎. 胶质瘤干细胞诱导宿主肝组织内肿瘤间质细胞恶性转化的实验研究. 苏州: 苏州大学, 2015.
    [5] LEONARDI G C, CANDIDO S, CERVELLO M, et al. The tumor microenvironment in hepatocellular carcinoma (Review). Int J Oncol,2012,40(6): 1733–1747. doi: 10.3892/ijo.2012.1408
    [6] 黄勇超, 施冬云, 刘珊林, 等. α-硫辛酸对缺氧应激肝癌细胞线粒体呼吸率和产能代谢的影响. 生物物理学报,2007,23(6): 436–442. doi: 10.3321/j.issn:1000-6737.2007.06.004
    [7] 黄光明, 沈薇. SCD1对肝癌SMMC-7721细胞脂质代谢的影响及可能机制. 肿瘤学杂志,2017,23(8): 653–657. doi: 10.11735/j.issn.1671-170X.2017.08.B001
    [8] LI S, LIU R, PAN Q, et al. De novo lipogenesis is elicited dramatically in human hepatocellular carcinoma especially in hepatitis C virus‐induced hepatocellular carcinoma. Med Comm,2020,1(2): 178–187. doi: 10.1002/mco2.15
    [9] 汪浩. p53凋亡刺激蛋白2调控肝癌脂质代谢的研究. 上海: 第二军医大学, 2017.
    [10] CHENG C, GENG F, CHENG X, 等. 脂质代谢重编程及其在癌症中潜在靶点的研究. 癌症,2018,37(11): 473–493.
    [11] GAO X, LIN S H, REN F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun,2016,7(1): 11960. doi: 10.1038/ncomms11960
    [12] 齐仁立, 黄金秀, 杨飞云, 等. 脂肪酸转运蛋白家族及其介导的脂肪酸跨膜转运. 动物营养学报,2013,25(5): 905–911. doi: 10.3969/j.issn.1006-267x.2013.05.003
    [13] WANG X, HASSAN W, JABEEN Q, et al. Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma. Cytokine,2018,103: 150–159. doi: 10.1016/j.cyto.2017.09.026
    [14] 李柱, 谭支良, 韩雪峰, 等. 脂肪酸转运蛋白家族(FATPs)的研究进展. 生命科学研究,2013,17(4): 348–353. doi: 10.16605/j.cnki.1007-7847.2013.04.010
    [15] HU B, LIN J Z, YANG X B, et al. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Prolif,2020,53(3): e12772[2020-12-12]. https://doi.org/10.1111/cpr.12772. doi: 10.1111/cpr.12772
    [16] IPSEN D H, LYKKESFELDT J, TVEDEN-NYBORG P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci,2018,75(18): 3313–3327. doi: 10.1007/s00018-018-2860-6
    [17] BECHMANN L P, HANNIVOORT R A, GERKEN G, et al. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol,2012,56(4): 952–964. doi: 10.1016/j.jhep.2011.08.025
    [18] CASSIM S, RAYMOND V A, DEHBIDI-ASSADZADEH L, et al. Metabolic reprogramming enables hepatocarcinoma cells to efficiently adapt and survive to a nutrient-restricted microenvironment. Cell Cycle,2018,17(7): 903–916. doi: 10.1080/15384101.2018.1460023
    [19] LI Y, CAI W, YI Q, et al. Lipid droplets may lay a spacial foundation for vasculogenic mimicry formation in hepatocellular carcinoma. Med Hypotheses,2014,83(1): 56–59. doi: 10.1016/j.mehy.2014.04.009
    [20] HEIDEN M G V, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science,2009,324(5930): 1029–1033. doi: 10.1126/science.1160809
    [21] PIKE L S, SMIFT A L, CROTEAU N J, et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta,2011,1807(6): 726–734. doi: 10.1016/j.bbabio.2010.10.022
    [22] WANG H C. Fatty acid synthase and the lipogenic phenotype in WSSV-infected shrimp. Fish and Shellfish Immunology,2016,53: 61–61. doi: 10.1016/j.fsi.2016.03.051
    [23] 王明达. HBx在代谢应激条件下对肝癌细胞存活的调控和机制研究. 上海: 第二军医大学, 2016.
    [24] LIN H P, CHENG Z L, HE R Y, et al. Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res,2016,76(23): 6924–6936. doi: 10.1158/0008-5472.CAN-16-1597
    [25] 龚娇娇. FASN在乙型肝炎病毒相关性肝癌迁移侵袭过程中的作用机制研究. 重庆: 重庆医科大学, 2017.
    [26] MACH N, JACOBS A, KRUIJT L, et al. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids. Animal,2011,5(8): 1217–1230. doi: 10.1017/S1751731111000103
    [27] 马柳安, 邱惠玲, 李荔, 等. miRNA通过PPAR和AMPK/SREBPs信号通路调控脂质代谢. 生命的化学,2017,37(6): 1017–1029. doi: 10.13488/j.smhx.20170623
    [28] 沈亮. MicroRNA-199a-3p调控mTOR信号通路抑制胶质瘤细胞增殖的机制研究. 苏州: 苏州大学, 2015.
    [29] CUI M, WANG Y, SUN B, et al. MiR-205 modulates abnormal lipid metabolism of hepatoma cells via targeting acyl-CoA synthetase long-chain family member 1 (ACSL1) mRNA. Biochem Biophys Res Commun,2014,444(2): 270–275. doi: 10.1016/j.bbrc.2014.01.051
    [30] LLIOPOULOS D, DROSATOS K, HLYAMA Y, et al. Micro RNA-370 controls the expression of micro RNA-122 and Cpt1α and affects lipid metabolism. Lipid Res,2010,51(6): 1513–1523. doi: 10.1194/jlr.M004812
    [31] 苏东玮, 皮浩, 方国恩, 等. 低糖低氧状态下AMPK通路通过PPARα调控CPT1c影响人甲状腺乳头状癌B-CPAP细胞的凋亡. 中国肿瘤生物治疗杂志,2020,27(5): 508–514. doi: CNKI:SUN:ZLSW.0.2020-05-006
    [32] 贾夏丽, 潘洋洋, 乔利英, 等. 脂肪分化相关信号通路及microRNA调节研究进展. 畜牧兽医学报,2015,46(4): 518–525. doi: 10.11843/j.issn.0366-6964.2015.04.002
    [33] 刘柳. PRMT5通过甲基化SREBP1a影响肝癌细胞脂质代谢及增殖. 上海: 上海交通大学, 2015.
    [34] HICKS J A, TRAKOOLJUL N, LIU H C. Discovery of chocken micro RNAs associated with lipogenesis and cell proliferation. Physiol Genomics,2010,41(2): 185–193. doi: 10.1152/physiolgenomics.00156.2009
    [35] ZHU D Q, LOU Y F, HE Z G, et al. Nucleotidyl transferase TUT1 inhibits lipogenesis in osteosarcoma cells through regulation of microRNA-24 and microRNA-29a. Tumor Biol,2014,35(12): 11829–11835. doi: 10.1007/s13277-014-2395-x
    [36] 李艳, 李荣华, 符小玉, 等. MicroRNA-33b通过靶向调控SALL4的表达抑制肝细胞癌细胞增殖. 中南大学学报(医学版),2016,41(9): 905–910. doi: 10.11817/j.issn.1672-7347.2016.09.004
    [37] 于俊杰, 詹晓蓉, 王晓辰, 等. MicroRNA-185改善非酒精性脂肪肝小鼠胰岛素敏感性并调节脂代谢基因的表达. 现代生物医学进展,2018,18(8): 1425–1430. doi: 10.13241/j.cnki.pmb.2018.08.005
    [38] MENENDEZ J A, LUPU R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets,2017,21(11): 1001–1016. doi: 10.1080/14728222.2017.1381087
  • 加载中
计量
  • 文章访问数:  103
  • HTML全文浏览量:  92
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2020-12-13
  • 刊出日期:  2021-07-22

目录

    /

    返回文章
    返回