欢迎来到《四川大学学报(医学版)》

载胰岛素口服固体脂质纳米粒的构建及其跨肠上皮细胞转运的研究

郑雅娴 何琴 徐敏 黄园

郑雅娴, 何琴, 徐敏, 等. 载胰岛素口服固体脂质纳米粒的构建及其跨肠上皮细胞转运的研究[J]. 四川大学学报(医学版), 2021, 52(4): 570-576. doi: 10.12182/20210760502
引用本文: 郑雅娴, 何琴, 徐敏, 等. 载胰岛素口服固体脂质纳米粒的构建及其跨肠上皮细胞转运的研究[J]. 四川大学学报(医学版), 2021, 52(4): 570-576. doi: 10.12182/20210760502
ZHENG Ya-xian, HE Qin, XU Min, et al. Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 570-576. doi: 10.12182/20210760502
Citation: ZHENG Ya-xian, HE Qin, XU Min, et al. Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 570-576. doi: 10.12182/20210760502

栏目: 论 著

载胰岛素口服固体脂质纳米粒的构建及其跨肠上皮细胞转运的研究

doi: 10.12182/20210760502
基金项目: 国家自然科学基金(No. 81872818)和四川省医学青年创新科研课题计划(No. Q20019)资助
详细信息
    通讯作者:

    E-mail:huangyuan0@163.com

Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study

More Information
  • 摘要:   目的  采用混合溶剂构建载多肽蛋白类药物的固体脂质纳米递药系统(solid lipid nanoparticles, SNPs),探究SNPs跨肠上皮细胞的转运机理,提高多肽蛋白类药物的细胞摄取和跨膜转运效率。  方法  采用甲醇-氯仿混合溶剂制备载胰岛素的水包油包水型固体脂质纳米粒(INS-SNPs)。通过单因素筛选法优化INS-SNPs的处方,并表征最优纳米粒的形态、体外稳定性和药物释放等性质。通过Caco-2细胞考察INS-SNPs的细胞毒性、细胞摄取和入胞机制。采用Transwell®单层细胞模型进一步评价纳米粒的跨膜转运效率。  结果  筛选得到的最优处方INS-SNPs的粒径为(145.4±0.5) nm,电位为(−12.9±0.2) mV,载药量为(7.93±0.02)%。INS-SNPs在模拟肠液中展现出良好的胶体稳定性,能持续缓慢释放药物。细胞摄取结果显示,INS-SNPs在与细胞孵育2 h时达到最大的摄取量,较游离胰岛素提高了1.53倍。摄取机制表明,INS-SNPs主要通过网格蛋白和小窝蛋白介导的内吞途径进入肠上皮细胞。进一步考察纳米粒跨膜转运发现,跨膜转运效率较游离胰岛素提高了1.54倍,与细胞摄取的提高程度(1.53倍)相当,提示纳米粒具有较好的跨膜转运效率。  结论  本研究采用混合溶剂构建的INS-SNPs能显著提高多肽蛋白类药物跨膜转运效率,展现出较大的口服应用潜力,可为后续口服纳米递药系统的设计提供参考。
  • 图  1  SC用量对INS-SNPs的粒径、电位、包封率和载药量的影响(n=3)

    Figure  1.  The effect of varied amount of SC on the particle size, Zeta potential , encapsulation efficiency and drug loading of INS-SNPs (n=3)

    图  2  INS用量对INS-SNPs的粒径、电位、包封率和载药量的影响(n=3)

    Figure  2.  The effect of varied amount of INS on the particle size, Zeta potential , encapsulation efficiency and drug loading of INS-SNPs (n=3)

    图  3  TP用量对INS-SNPs的粒径、电位、包封率和载药量的影响(n=3)

    Figure  3.  The effect of varied amount of TP on the particle size, Zeta potential , encapsulation efficiency and drug loading of INS-SNPs (n=3)

    图  4  SA用量对INS-SNPs的粒径、电位、包封率和载药量的影响(n=3)

    Figure  4.  The effect of varied amount of SA on the particle size, Zeta potential , encapsulation efficiency and drug loading of INS-SNPs (n=3)

    图  5  SPC用量对INS-SNPs的粒径、电位、包封率和载药量的影响(n=3)

    Figure  5.  The effect of varied amount of SPC on the particle size, Zeta potential, encapsulation efficiency and drug loading of INS-SNPs (n=3)

    图  6  F68浓度对INS-SNPs的粒径、电位、包封率和载药量的影响(n=3)

    Figure  6.  The effect of varied concentra of F68 on the particle size, Zeta potential, encapsulation efficiency and drug loading of INS-SNPs (n=3)

    图  7  INS-SNPs的形态和在SGF和SIF的稳定性

    Figure  7.  The morphology and stability of INS-SNPs in SGF and SIF

    A: The TEM images of INS-SNPs; The TEM images of INS-SNPs in SGF (B) and in SIF (incubate for 8 h, C); D: The colloidal stability of INS-SNPs in SIF (n=3), *P<0.05; E: The cumulative release of INS in SIF.

    图  8  F-INS-SNPs和F-INS对Caco-2细胞活性的影响(n=3)

    Figure  8.  The cytotoxicity of F-INS-SNPs and F-INS on Caco-2 cells (n=3)

    图  9  不同质量浓度(A)和不同时间(B)F-INS-SNPs和F-INS在Caco-2细胞中的摄取量(n=3)

    Figure  9.  The cellular uptake of F-INS-SNPs and F-INS on Caco-2 at different concentration (A) and different time (B) (n=3)

    *P<0.05.

    图  10  入胞抑制剂对F-INS-SNPs细胞摄取的影响(n=3)

    Figure  10.  Endocytosis of F-INS-SNPs in the presence of endocytosis inhibitors (n=3)

    *P<0.05, vs. control.

    图  11  F-INS-SNPs在Caco-2细胞中的跨膜转运观察

    Figure  11.  Transepithelial transport of F-INS-SNPs in Caco-2 cells

    A: The TEER values of Transwell before and after incubation (n=3); B: Papp value of F-INS transported across Transwells (n=3), *P<0.05; C: The schematic illustration of INS-SNPs across the intestinal epithelium.

  • [1] DRUCKER D J. Advances in oral peptide therapeutics. Nat Rev Drug Discovery,2020,19(4): 277–289. doi: 10.1038/s41573-019-0053-0
    [2] WU J, ZHENG Y, LIU M, et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces,2018,10(12): 9916–9928. doi: 10.1021/acsami.7b16524
    [3] AGUIRRE T A, TEIJEIRO-OSORIO D, ROSA M, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev,2016,106(Pt B): 223–241. doi: 10.1016/j.addr.2016.02.004
    [4] 姚晟瑜, 樊星砚, 江宽, 等. 胰岛素口服给药的困境与突破. 药学学报,2020,55(7): 1549–1561.
    [5] 高明月, 霍英楠, 申欣, 等. 改良的在体循环法用于胰岛素的鼻腔吸收研究. 药学学报,2018,53(9): 1551–1556.
    [6] XU Y, ZHENG Y, WU L, et al. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl Mater Interfaces,2018,10(11): 9315–9324. doi: 10.1021/acsami.8b00507
    [7] BELOQUI A, DES RIEUX A, PREAT V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev,2016,106(Pt B): 242–255. doi: 10.1016/j.addr.2016.04.014
    [8] ZHANG S, GAO H, BAO G. Physical principles of nanoparticle cellular endocytosis. ACS Nano,2015,9(9): 8655–8671. doi: 10.1021/acsnano.5b03184
    [9] ZHU X, WU J, SHAN W, et al. Polymeric nanoparticles amenable to simultaneous installation of exterior targeting and interior therapeutic proteins. Angew Chem Int Ed,2016,55(10): 3309–3312. doi: 10.1002/anie.201509183
    [10] SONG X, LI R, DENG H, et al. Receptor mediated transcytosis in biological barrier: The influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers. Biomaterials,2018,180: 78–90. doi: 10.1016/j.biomaterials.2018.07.006
    [11] CHEN C, ZHU X, DOU Y, et al. Exendin-4 loaded nanoparticles with a lipid shell and aqueous core containing micelles for enhanced intestinal absorption. J Biomed Nanotechnol,2015,11(5): 865–876. doi: 10.1166/jbn.2015.1971
    [12] WU L, LIU M, SHAN W, et al. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J Control Release,2017,262: 273–283. doi: 10.1016/j.jconrel.2017.07.045
    [13] CHEN C, FAN T, JIN Y, et al. Orally delivered salmon calcitonin-loaded solid lipid nanoparticles prepared by micelle-double emulsion method via the combined use of different solid lipids. Nanomedicine,2012,8(7): 1085–1100. doi: 10.2217/nnm.12.141
    [14] LIU J, GONG T, FU H, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm,2008,356(1): 333–344. doi: 10.1016/j.ijpharm.2008.01.008
    [15] FAN W, XIA D, ZHU Q, et al. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials,2018,151: 13–23. doi: 10.1016/j.biomaterials.2017.10.022
  • 加载中
图(11)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  52
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-06-01
  • 刊出日期:  2021-07-22

目录

    /

    返回文章
    返回