欢迎来到《四川大学学报(医学版)》

干细胞及其仿生基质微环境在关节软骨再生修复中的作用综述

曹洪芙 李珠廉 孙勇 樊渝江 张兴栋

曹洪芙, 李珠廉, 孙勇, 等. 干细胞及其仿生基质微环境在关节软骨再生修复中的作用综述[J]. 四川大学学报(医学版), 2021, 52(4): 548-554. doi: 10.12182/20210760301
引用本文: 曹洪芙, 李珠廉, 孙勇, 等. 干细胞及其仿生基质微环境在关节软骨再生修复中的作用综述[J]. 四川大学学报(医学版), 2021, 52(4): 548-554. doi: 10.12182/20210760301
CAO Hong-fu, LI Zhu-lian, SUN Yong, et al. Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 548-554. doi: 10.12182/20210760301
Citation: CAO Hong-fu, LI Zhu-lian, SUN Yong, et al. Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 548-554. doi: 10.12182/20210760301

栏目: 综 述

干细胞及其仿生基质微环境在关节软骨再生修复中的作用综述

doi: 10.12182/20210760301
基金项目: 国家重点研发计划重点专项(No. 2018YFC1105900)、国家自然科学基金面上项目(No. 32071352)和四川省重点研发计划重点专项(No. 2019YFS0007)资助
详细信息
    通讯作者:

    E-mail:sunyong8702@scu.edu.cn

Role of Stem Cells and Their Biomimetic Matrix Microenvironment in Regenerative Repair of Articular Cartilage: A Review

More Information
  • 摘要: 关节软骨由于无神经、无血管的特性,一旦损伤,其自我修复十分困难。干细胞技术的发展为关节软骨再生提供了新的希望。当前,不同来源的干细胞及多种应用方式在关节软骨修复中展现出不同程度的治疗效果。然而,干细胞对其所处的微环境均有极强的敏感性,这使得越来越多的研究者开始关注通过生物功能性支架构建的仿生微环境来调控干细胞,进而加速软骨再生。本文主要讨论了软骨修复的干细胞来源、其应用手段及其协同仿生细胞微环境在关节软骨修复方面的治疗效果、机制和应用不足。希望对协同干细胞的功能性软骨修复支架的设计和优化提供更加切实的临床化研究思路。
  • 图  1  组织工程关节软骨三要素

    Figure  1.  Three elements of tissue engineering articular cartilage

    TGF-β: Transforming growth factor-β; BMP-2: Bone morphogenetic protein-2; IGF: Insulin-like growth factor.

    图  2  无支架干细胞应用于关节软骨修复的方式

    Figure  2.  Application of scaffold-free stem cells in articular cartilage repair

    A: Direct intraarticular injection of stem cells; B: Co-injection of auxiliary active ingredients; C: Microfracture, utilizing endogenous stem cells; PRP: Platelet rich plasma.

    表  1  不同MSC的成软骨分化的优缺点

    Table  1.   Strengths and weaknesses of chondrogenic differentiation of different mesenchymal stem cells

    Cell sourceAdvantageDisadvantageReferences
    Bone marrow mesenchymal stem cell (BMSC) One of the most common and effective sources for the treatment of cartilage damage. Clinically, it is relatively difficult to extract BMSCs, and the sampling process is highly invasive, while the amount is limited. [18-20]
    Adipose derived mesenchymal stem cell (ADSC) ADSC is widely derived and easy to obtain, can secrete a variety of cytokines, and has high proliferative capacity and multidirectional differentiation potential. The chondrogenic potential islower than that of BMSCs. [21-22]
    Human umbilical cord derived mesenchymal stem cell (hUC-MSC) hUC-MSC is easy to isolate and culture, and has less ethical issues, painless harvest process, high cell proliferation, broad differentiation potential and low immunogenicity. Most of them are allografts. [23-24]
    Umbilical cord blood mesenchymal stem cell (UCB-MSC) Noninvasive collection, showing very high proliferative capacity. Most of them are allografts. [25-26]
    Synovialmesenchymal stem cell (SMSC) SMSC has greater chondrogenic potential than MSC from other sources. SMSCis difficult to extract and there is only limited research. [27]
    下载: 导出CSV
  • [1] HUEY D J, HU J C, ATHANASIOU K A. Unlike bone, cartilage regeneration remains elusive. Science,2012,338(6109): 917–921. doi: 10.1126/science.1222454
    [2] HUANG B J, HU J C, ATHANASIOU K A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials,2016,98: 1–22. doi: 10.1016/j.biomaterials.2016.04.018
    [3] KANE P, FREDERICK R, TUCKER B, et al. Surgical restoration/repair of articular cartilage injuries in athletes. Physician Sportsmed,2013,41(2): 75–86. doi: 10.3810/psm.2013.05.2017
    [4] ORTH P, GAO L, MADRY H. Microfracture for cartilage repair in the knee: A systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc,2020,28(3): 670–706. doi: 10.1007/s00167-019-05359-9
    [5] ARMOIRY X, CUMMINS E, CONNOCK M, et al. Autologous chondrocyte implantation with chondrosphere for treating articular cartilage defects in the knee: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics,2019,37(7): 879–886. doi: 10.1007/s40273-018-0737-z
    [6] PERDISA F, GOSTYŃSKA N, ROFFI A, et al. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem cells int, 2015, 2015: 597652[2020-12-23].https://doi.org/10.1155/2015/597652.
    [7] NIEMEYER P, LAUTE V, JOHN T, et al. The effect of cell dose on the early magnetic resonance morphological outcomes of autologous cell implantation for articular cartilage defects in the knee: A randomized clinical trial. Am J Sport Med,2016,44(8): 2005–2014. doi: 10.1177/0363546516646092
    [8] DECKER R S. Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol,2017,62: 50–56. doi: 10.1016/j.semcdb.2016.10.005
    [9] IM G I. Tissue engineering in osteoarthritis: Current status and prospect of mesenchymal stem cell therapy. Biodrugs,2018,32(3): 183–192. doi: 10.1007/s40259-018-0276-3
    [10] KONG L, ZHENG L Z, QIN L, et al. Role of mesenchymal stem cells in osteoarthritis treatment. J Orthop Transl,2017,9: 89–103. doi: 10.1016/j.jot.2017.03.006
    [11] HAN P, FRITH J E, GOMEZ G A, et al. 5 piconewtons: The difference between osteogenic and adipogenic fate choice in human mesenchymal stem cells. ACS Nano,2019,13(10): 11129–11143. doi: 10.1021/acsnano.9b03914
    [12] FOYT D A, NORMAN M D A, YU T T L, et al. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Health Care Mater,2018,7(8): 1700939. doi: 10.1002/adhm.201700939
    [13] KLOXIN A M, KASKO A M, SALINAS C N, et al. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science,2009,324(5923): 59–63. doi: 10.1126/science.1169494
    [14] WALTERS N J, GENTLEMAN E. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater,2015,11: 3–16. doi: 10.1016/j.actbio.2014.09.038
    [15] CHANG Y H, LIU H W, WU K C, et al. Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant,2016,25(5): 937–950. doi: 10.3727/096368915X690288
    [16] HARRELL C R, MARKOVIC B S, FELLABAUM C, et al. Mesenchymal stem cell-based therapy of osteoarthritis: current knowledge and future perspectives. Biomed Pharmacother,2019,109: 2318–2326. doi: 10.1016/j.biopha.2018.11.099
    [17] KADIYALA S, YOUNG R G, THIEDE M A, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant,1997,6(2): 125–134. doi: 10.1016/S0963-6897(96)00279-5
    [18] TABATABAEE R M, SABERI S, PARVIZI J, et al. Combining concentrated autologous bone marrow stem cells injection with core decompression improves outcome for patients with early-stage osteonecrosis of the femoral head: A comparative study. J Arthroplasty,2015,30(9): 11–15. doi: 10.1016/j.arth.2015.06.022
    [19] YANG X, ZHU T Y, WEN L C, et al. Intraarticular injection of allogenic mesenchymal stem cells has a protective role for the osteoarthritis. Chinese Med J,2015,128(18): 2516. doi: 10.4103/0366-6999.164981
    [20] SHIM G, LEE S, HAN J, et al. Pharmacokinetics and in vivo fate of intra-articularly transplanted human bone marrow-derived clonal mesenchymal stem cells. Stem Cells Dev,2015,24(9): 1124–1132. doi: 10.1089/scd.2014.0240
    [21] WANG T, NIMKINGRATANA P, SMITH C A, et al. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res, 2019, 39: 101497[2020-12-23]. https://doi.org/10.1016/j.scr.2019.101497.
    [22] VAN LENT P L E M, VAN DEN BERG W B. Mesenchymal stem cell therapy in osteoarthritis: advanced tissue repair or intervention with smouldering synovial activation?ArthritisResTher, 2013, 15: 112[2020-12-23]. 10.1186/ar4190">https://doi.org/ 10.1186/ar4190.DOI: 10.1186/ar4190.
    [23] GENG Y, CHEN J, ALAHDAL M, et al. Intra-articular injection of hUC-MSC expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. J Bone Miner Metab,2020,38(3): 277–288. doi: 10.1007/s00774-019-01055-3
    [24] WANG D, CHEN K, DU W T, et al. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res,2010,316(15): 2414–2423. doi: 10.1016/j.yexcr.2010.04.018
    [25] JEON H J, YOON K A, AN E S, et al. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells combined with cartilage acellular matrix mediated via bone morphogenic protein 6 in a rabbit model of articular cruciate ligament transection. Stem Cell Rev Rep,2020,16(3): 596–611. doi: 10.1007/s12015-020-09958-9
    [26] KERN S, EICHLER H, STOEVE J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells,2006,24(5): 1294–1301. doi: 10.1634/stemcells.2005-0342
    [27] KRISTJANSSON B, HONSAWEK S. Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int,2014,2014: 47–59. doi: 10.1155/2014/194318
    [28] HWANG Y S, KANG Y, MANTALARIS A. Directing embryonic stem cell differentiation into osteogenic chondrogenic lineage in vitro. Biotechnol Bioproc E,2007,12(1): 15–21. doi: 10.1007/BF02931798
    [29] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006,126(4): 663–676. doi: 10.1016/j.cell.2006.07.024
    [30] NAKAJIMA M, WAKITANI S, HARADA Y, et al. In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint. J Orthop Res,2008,26(1): 10–17. doi: 10.1002/jor.20462
    [31] KRAMER J, HEGERT C, GUAN K, et al. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev,2000,2: 193–205. doi: 10.1016/S0925-4773(99)00339-1
    [32] 冯振邦, 李萌, 王宗强, 等. 诱导多能干细胞在组织工程修复关节软骨损伤的研究进展. 中华细胞与干细胞杂志(电子版),2015,5(4): 281–286[2020-12-23
    [33] VERONESI F, GIAVARESI G, TSCHON M, et al. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev,2013,22(2): 181–192. doi: 10.1089/scd.2012.0373
    [34] JO C H, LEE Y G, SHIN W H, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells,2014,32(5): 1254–1266. doi: 10.1002/stem.1634
    [35] MATAS J, ORREGO M, AMENABAR D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase Ⅰ/Ⅱ trial. Stem Cell Transl Med,2019,8(3): 215–224. doi: 10.1002/sctm.18-0053
    [36] FREITAG J, BATES D, WICKHAM J, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial. Regen Med,2019,14(3): 213–230. doi: 10.2217/rme-2018-0161
    [37] KOH Y G, CHOI Y J, KWON S K, et al. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc,2015,23(5): 1308–1316. doi: 10.1007/s00167-013-2807-2
    [38] HUNZIKER E B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage,2002,10(6): 432–463. doi: 10.1053/joca.2002.0801
    [39] CASE J M, SCOPP J M. Treatment of articular cartilage defects of the knee with microfracture and enhanced microfracture techniques. Sports Med Arthrosc Rev,2016,24(2): 63–68. doi: 10.1097/JSA.0000000000000113
    [40] CHEN G, DENG C, LI Y P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci,2012,8(2): 272–288. doi: 10.7150/ijbs.2929
    [41] RONZIERE M C, PERRIER E, MALLEIN-GERIN F, et al. Chondrogenic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells. Bio-med Mater Eng,2010,20(3): 145–158. doi: 10.3233/BME-2010-0626
    [42] MARYCZ K, LEWANDOWSKI D, TOMASZEWSKI K A, et al. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). Peer J, 2016, 4: e1637[2020-12-25]. https://peerj.com/articles/1637/. doi: 10.7717/peerj.1637.
    [43] TOH W S, LAI R C, HUI J H P, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol,2017,67: 56–64. doi: 10.1016/j.semcdb.2016.11.008
    [44] EMANS P J, PIEPER J, HULSBOSCH M, et al. Differential cell viability ofchondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects. Tissue Eng,2006,12(6): 1699–1709. doi: 10.1089/ten.2006.12.1699
    [45] 徐立璋, 邓国英, 王伟恒, 等. BMSC旁分泌对软骨细胞IL-1β损伤后的保护作用. 中国修复重建外科杂志,2015,29(8): 996–1002. doi: 10.7507/1002-1892.20150214
    [46] PARK Y B, HA C W, KIM J A, et al. Single-stage cell-based cartilage repair in a rabbit model: Cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthr Cartilage,2017,25(4): 570–580. doi: 10.1016/j.jcyt.2018.02.344
    [47] CHEN Y, SUI J, WANG Q, et al. Injectable self-crosslinking HA-SH/Col Ⅰ blend hydrogels for in vitro construction of engineered cartilage. Carbohydpolym,2018,190: 57–66. doi: 10.1016/j.carbpol.2018.02.057
    [48] YANG Q, PENG J, GUO Q, et al. A cartilage ECM-derived 3-Dporous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow derived mesenchymal stem cells. Biomaterials,2008,29(15): 2378–2387. doi: 10.1016/j.biomaterials.2008.01.037
    [49] 刘茜, 李雪健, 王忠山. 猪软骨脱细胞基质对人脂肪干细胞增殖及分化的影响. 华西口腔医学杂志,2020,38(2): 122–127. doi: 10.7518/hxkq.2020.02.002
    [50] 于庆贺. 基质刚度对人脂肪间充质干细胞成软骨分化的影响. 广州: 南方医科大学, 2020.
    [51] 洪雅真, 杨丁柱. 聚乳酸纳米纤维支架的生物相容性及促细胞成软骨分化. 材料导报,2018,32(18): 3239–3243. doi: 10.11896/j.issn.1005-023X.2018.18.025
    [52] KASPER G, DANKERT N, TUISCHER J, et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells,2007,25(4): 903–910. doi: 10.1634/stemcells.2006-0432
    [53] GIRISH K S, KEMPARAJUB K. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview. Life Sci,2007,80(21): 1921–1943. doi: 10.1016/j.lfs.2007.02.037
    [54] DAIPRÈ E, CONTI G, SBARBATI A. Hyaluronic acid (HA) scaffolds and multipotent stromal cells (MSCs) in regenerative medicine. Stem Cell Rev Rep,2016,12(6): 664–681. doi: 10.1007/s12015-016-9684-2
    [55] QAZI TH, MOONEY DJ, DUDA GN, et al. Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplifymesenchymal stromal cell paracrine effects. Biomaterials, 2019, 230: 119639[2020-12-23]. https://doi.org/10.1016/j.biomaterials.2019.119639.
    [56] KOTA D J, PRABHAKARA K S, COX C S, et al. MSC and hyaluronan: Sticking together for new therapeutic potential? Int J Biochem Cell Biol,2014,55: 1–10. doi: 10.1016/j.biocel.2014.07.022
    [57] 陈瑾楠. 高分子量透明质酸在炎症反应中作用的实验研究. 镇江: 江苏大学, 2019.
    [58] 丁万军. 羧甲基壳聚糖对大鼠骨关节炎软骨细胞NF-κB信号通路的影响. 武汉: 武汉大学, 2011.
    [59] PANNI S A, CERCIELLO S, VASSO M. The management of knee cartilage defects with modified AMIC technique: preliminary results. Int J Immunopathol Pharmacol,2011,24(1 Suppl 2): 149–152. doi: 10.1177/03946320110241s228
    [60] EFE T, THEISEN C, FUCHS-WINKELMANN S, et al. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc,2012,20(10): 1915–1922. doi: 10.1007/s00167-011-1777-5
    [61] BAKER B M, CHEN C S. Deconstructing the third dimension—How 3D culture microenvironments alter cellular cues. J Cell Sci,2012,125(13): 3015–3024. doi: 10.1242/jcs.079509
    [62] RICHING K M, COX B L, SALICK M R, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J,2014,107(11): 2546–2558. doi: 10.1016/j.bpj.2014.10.035
    [63] HE X, JIANG Y. Substrate curvature regulates cell migration. Phys Biol, 2017, 14(3): 035006[2020-12-23]. https://iopscience.iop.org/article/10.1088/1478-3975/aa6f8e. doi: 10.1088/1478-3975/aa6f8e.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  54
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-03-18
  • 刊出日期:  2021-07-22

目录

    /

    返回文章
    返回