欢迎来到《四川大学学报(医学版)》

壳聚糖修饰的纳米乳用于鼻腔疫苗递送的研究

郝欣岩 张远冬 侯盈盈 孙逊

郝欣岩, 张远冬, 侯盈盈, 等. 壳聚糖修饰的纳米乳用于鼻腔疫苗递送的研究[J]. 四川大学学报(医学版), 2021, 52(4): 592-597. doi: 10.12182/20210760104
引用本文: 郝欣岩, 张远冬, 侯盈盈, 等. 壳聚糖修饰的纳米乳用于鼻腔疫苗递送的研究[J]. 四川大学学报(医学版), 2021, 52(4): 592-597. doi: 10.12182/20210760104
HAO Xin-yan, ZHANG Yuan-dong, HOU Ying-ying, et al. Applying Chitosan-Modified Nanoemulsion in Nasal Vaccine Delivery[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 592-597. doi: 10.12182/20210760104
Citation: HAO Xin-yan, ZHANG Yuan-dong, HOU Ying-ying, et al. Applying Chitosan-Modified Nanoemulsion in Nasal Vaccine Delivery[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 592-597. doi: 10.12182/20210760104

栏目: 论 著

壳聚糖修饰的纳米乳用于鼻腔疫苗递送的研究

doi: 10.12182/20210760104
基金项目: 杰出青年基金项目(No. 81925036)和国家自然科学基金重大项目(No. 81690261)资助
详细信息
    通讯作者:

    E-mail:sunxun@scu.edu.cn

Applying Chitosan-Modified Nanoemulsion in Nasal Vaccine Delivery

More Information
  • 摘要:   目的  制备壳聚糖修饰的阳离子纳米乳,用于延长疫苗在鼻腔的滞留时间并提高细胞摄取效率,增强鼻腔疫苗免疫效力。  方法  制备表面包裹壳聚糖的纳米乳疫苗;表征其粒径、电位和抗原包封率,考察其稳定性和细胞毒性;测定其在不同细胞上的摄取效率和小鼠鼻腔的滞留情况;最后对小鼠进行鼻腔免疫,检测小鼠血清和鼻腔灌洗液中抗体水平。  结果  制备的壳聚糖修饰的纳米乳疫苗平均粒径为(167.2±0.75) nm,多分散系数为0.21±0.01,平均电位为(13.7±0.85) mV,对抗原的包封率为92.7%;该纳米乳疫苗稳定性良好,在犬肾上皮细胞上未表现出明显细胞毒性;在树突状细胞和犬肾上皮细胞上均显示了较高的摄取效率,分别为(49.7±3.45)%和(59.7±2.19)%。此外,阳离子纳米乳也显著增加了抗原在小鼠鼻腔的滞留时间,给药后60 min仍有较多纳米乳疫苗滞留于鼻腔;经小鼠鼻腔免疫后,与游离抗原和未经壳聚糖修饰的纳米乳疫苗比较,壳聚糖修饰的纳米乳疫苗诱导了较高的系统及黏膜抗体水平(P<0.01)。  结论  本研究制备的壳聚糖修饰纳米乳能够增强鼻腔疫苗免疫效力,是一个具有较大潜力的鼻腔疫苗递送载体。
  • 图  1  NE-OVA(A)和CS-NE-OVA(B)的透射电镜图

    Figure  1.  Transmission electron microscope (TEM) images of nanoemulsion (NE)-ovalbumin (OVA) (A) and chitosan (CS)-NE-OVA (B)

    图  2  CS-NE-OVA在4 ℃放置15 d的稳定性(n=3)

    Figure  2.  Stability of CS-NE-OVA at 4 °C for 15 d (n=3)

    图  3  NE在DC2.4和MDCK上的摄取效率(n=3)

    Figure  3.  The uptake efficiency of nanoemulsions on DC2.4 and MDCK (n=3)

    *P<0.0001, vs. OVA group; # P<0.0001, vs. NE-OVA group.

    图  4  MTT法检测CS-NE-OVA在MDCK细胞上的毒性(n=5)

    Figure  4.  Cytotoxicity of CS-NE-OVA on MDCK detected by MTT assay (n=5)

    图  5  CS-NE-OVA在鼻腔滞留情况

    Figure  5.  Nasal residence time of CS-NE-OVA

    图  6  ELISA法检测血清中IgG、IgG1、IgG2a和鼻腔灌洗液中IgA的抗体水平(n=4)

    Figure  6.  The levels of antibody were measured by ELISA assay: IgG, IgG1, IgG2a in serum and IgA in nasal wash (n=4)

    **P<0.01, ****P<0.0001.

  • [1] LI M, WANG Y, SUN Y, et al. Mucosal vaccines: Strategies and challenges. Immunol Lett,2020,217: 116–125. doi: 10.1016/j.imlet.2019.10.013
    [2] 王冰, 刘宏锐, 陈芳, 等. 口腔黏膜给药系统的药物动力学研究进展. 药学学报,2020,55(2): 226–234.
    [3] LOBAINA MATO Y. Nasal route for vaccine and drug delivery: Features and current opportunities. Int J Pharm, 2019, 572: 118813 [2021-03-15]. https://doi.org/10.1016/j.ijpharm.2019.118813.
    [4] BOYAKA P N. Inducing mucosal IgA: A challenge for vaccine adjuvants and delivery systems. J Immunol,2017,199(1): 9–16. doi: 10.4049/jimmunol.1601775
    [5] 欧歌, 马金秋, 朱林, 等. 三磷酸腺苷脂质体鼻用凝胶制备及其抗缺氧作用. 药学学报,2020,55(6): 1288–1295.
    [6] JIN Z, GAO S, CUI X, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm, 2019, 572: 118731[2021-03-15]. https://doi.org/10.1016/j.ijpharm.2019.118731.
    [7] 范雪莲, 徐月桦, 陈刚. 氟化超支化聚酰胺-胺作为流感DNA疫苗递送载体的研究. 药学学报,2020,55(6): 1282–1287.
    [8] BERNOCCHI B, CARPENTIER R, BETBEDER D. Nasal nanovaccines. Int J Pharm,2017,530(1/2): 128–138. doi: 10.1016/j.ijpharm.2017.07.012
    [9] BRITO L A, CHAN M, SHAW C A, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther,2014,22(12): 2118–2129. doi: 10.1038/mt.2014.133
    [10] KO E J, KANG S M. Immunology and efficacy of MF59-adjuvanted vaccines. Hum Vaccin Immunother,2018,14(12): 3041–3045. doi: 10.1080/21645515.2018.1495301
    [11] SHIM S, YOO H S. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar Drugs,2020,18(12): 605. doi: 10.3390/md18120605
    [12] BRUINSMANN F A, PIGANA S, AGUIRRE T, et al. Chitosan-coated nanoparticles: Effect of chitosan molecular weight on nasal transmucosal delivery. Pharmaceutics,2019,11(2): 86. doi: 10.3390/pharmaceutics11020086
    [13] CHRISTENSEN D, BOLLEHUUS HANSEN L, LEBOUX R, et al. A liposome-based adjuvant containing two delivery systems with the ability to induce mucosal immunoglobulin A following a parenteral immunization. ACS Nano,2019,13(2): 1116–1126. doi: 10.1021/acsnano.8b05209
    [14] LI J, DIAZ-AREVALO D, CHEN Y, et al. Intranasal vaccination with an engineered influenza virus expressing the receptor binding subdomain of botulinum neurotoxin provides protective immunity against botulism and influenza. Front Immunol, 2015, 6: 170[2021-03-15]. https://doi.org/10.3389/fimmu.2015.00170.
    [15] KUMAR P, NAGARAJAN A, UCHIL P D. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc,2018,2018(6): 469–471. doi: 10.1101/pdb.prot095505
    [16] LI M, ZHAO M, FU Y, et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release,2016,228: 9–19. doi: 10.1016/j.jconrel.2016.02.043
    [17] DI COLA E, CANTU L, BROCCA P, et al. Novel O/W nanoemulsions for nasal administration: Structural hints in the selection of performing vehicles with enhanced mucopenetration. Colloids Surf B Biointerfaces, 2019, 183: 110439[2021-03-15]. https://doi.org/10.1016/j.colsurfb.2019.110439.
    [18] JIANG Y, LI M, ZHANG Z, et al. Enhancement of nasal HIV vaccination with adenoviral vector-based nanocomplexes using mucoadhesive and DC-targeting adjuvants. Pharm Res,2014,31(10): 2748–2761. doi: 10.1007/s11095-014-1372-9
    [19] LI M, LI Y, PENG K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater,2017,64: 237–248. doi: 10.1016/j.actbio.2017.10.019
    [20] MORAN H B T, TURLEY J L, ANDERSSON M, et al. Immunomodulatory properties of chitosan polymers. Biomaterials,2018,184: 1–9. doi: 10.1016/j.biomaterials.2018.08.054
    [21] LI D, FU D, KANG H, et al. Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr Drug Deliv,2017,14(1): 27–35. doi: 10.2174/1567201813666160804121123
  • 加载中
图(6)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  31
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-06-04
  • 网络出版日期:  2021-07-22
  • 刊出日期:  2021-07-22

目录

    /

    返回文章
    返回