欢迎来到《四川大学学报(医学版)》

双响应性透明质酸碳量子点-明胶纳米递药系统的构建及抗肿瘤效果评价

李曼 李建平 王雅施 何勤

李曼, 李建平, 王雅施, 等. 双响应性透明质酸碳量子点-明胶纳米递药系统的构建及抗肿瘤效果评价[J]. 四川大学学报(医学版), 2021, 52(4): 577-584. doi: 10.12182/20210760103
引用本文: 李曼, 李建平, 王雅施, 等. 双响应性透明质酸碳量子点-明胶纳米递药系统的构建及抗肿瘤效果评价[J]. 四川大学学报(医学版), 2021, 52(4): 577-584. doi: 10.12182/20210760103
LI Man, LI Jian-ping, WANG Ya-shi, et al. Construction and Anti-tumor Effect Evaluation of a Dual-Responsive Hyaluronic Acid Carbon Quantum Dot-Gelatin Nano-Drug Delivery System[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 577-584. doi: 10.12182/20210760103
Citation: LI Man, LI Jian-ping, WANG Ya-shi, et al. Construction and Anti-tumor Effect Evaluation of a Dual-Responsive Hyaluronic Acid Carbon Quantum Dot-Gelatin Nano-Drug Delivery System[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(4): 577-584. doi: 10.12182/20210760103

栏目: 论 著

双响应性透明质酸碳量子点-明胶纳米递药系统的构建及抗肿瘤效果评价

doi: 10.12182/20210760103
基金项目: 国家自然科学基金(No.81690261、No.81773658)资助
详细信息
    通讯作者:

    E-mail:qinhe317@126.com

Construction and Anti-tumor Effect Evaluation of a Dual-Responsive Hyaluronic Acid Carbon Quantum Dot-Gelatin Nano-Drug Delivery System

More Information
  • 摘要:   目的  通过构建pH和基质金属蛋白酶(matrix metalloproteinase, MMP)双响应性粒径可变纳米递药系统,协同提高化疗药物在肿瘤组织的高效滞留和高效穿透,增强肿瘤治疗效果。  方法  构建了透明质酸(hyaluronic acid, HA)碳量子点(carbon quantum dots, CD)偶联明胶纳米粒(gelatin nanoparticle, GNP),通过pH敏感的亚胺连接化疗药物阿霉素(doxorubicin, DOX),得到GNP@HA-CD-DOX纳米粒并进行表征,考察粒径变化能力、释药行为、血液相容性、细胞摄取和肿瘤球深层穿透能力、体内肿瘤分布以及治疗效果。  结果  GNP@HA-CD-DOX纳米粒粒径为(162.93±2.55) nm,在MMP处理下可降解释放出粒径约40 nm的HA-CD-DOX。该纳米粒DOX载药量为(4.94±0.22)%,DOX可以在肿瘤微环境和溶酶体中响应低pH释放。GNP@HA-CD-DOX无明显溶血现象;与MMP-2共孵育后粒径减小,能够明显提高细胞摄取和肿瘤球中的深层穿透。GNP@HA-CD-DOX在荷瘤小鼠模型上表现出优于小粒径HA-CD-DOX的肿瘤分布和抗肿瘤能力,且安全性较好。  结论  该pH和MMP酶双响应粒径可变的纳米递药系统协同提高药物在肿瘤的滞留和深层穿透,提高了抗肿瘤效果,为肿瘤治疗提供了新的思路。
  • 图  1  GNP@HA-CD-DOX结构示意图和MMP-2酶响应性定性考察

    A: Schematic illustration of GNP@HA-CD-DOX; B: Size and morphology of GNP@HA-CD-DOX co-incubated with MMP-2 enzyme for 0 h; C: Size and morphology of GNP@HA-CD-DOX co-incubated with MMP-2 enzyme for 24 h.

    Figure  1.  Schematic illustration of GNP@HA-CD-DOX and MMP-2 enzyme responsiveness of GNP@HA-CD-DOX

    图  2  GNP@HA-CD-DOX(A)和游离DOX(B)在不同pH下药物释放曲线(n=3)

    Figure  2.  In vitro drug release profile of GNP@HA-CD-DOX (A) and free DOX (B) in different pH release medium (n=3)

    图  3  GNP@HA-CD-DOX(DOX:20 μg/mL)溶血情况及红细胞形态图(A,×20)及不同DOX质量浓度的GNP@HA-CD-DOX制剂在不同时间点的溶血率(B,n=3)

    a: Positive control+red blood cell; b: Negative control+red blood cell; c: GNP@HA-CD-DOX+red blood cell; d: GNP@HA-CD-DOX.

    Figure  3.  Photo images of hemolysis and red blood cell morphology of GNP@HA-CD-DOX at DOX concentration of 20 μg/mL (A, ×20) and percentage of hemolysis of GNP@HA-CD-DOX at different concentrations (B, n=3)

    图  4  激光共聚焦(A)和流式细胞术(B)考察4T1细胞的摄取情况(标尺:20 μm,n=3)

    Figure  4.  Confocal laser scanning microscopy images (A) and statistical analysis of flow cytometry results (B) of cellular internalization by 4T1 cells (scale bar=20 μm, n=3)

    图  5  孵育24 h后4T1细胞肿瘤球上的深层穿透考察(标尺:100 μm)

    Figure  5.  Penetration on 4T1 tumor spheroids after incubation for 24 h (scale bar=100 μm)

    图  6  尾静脉给药后各时间点活体成像结果(A)、离体肿瘤分布情况(B)及半定量分析(C,n=3)

    **P<0.01, ***P<0.001. a: Free ICG group; b: HA-CD-DOX@ICG group; c: GNP@HA-CD-DOX@ICG group.

    Figure  6.  In vivo biodistribution of different formulations post administration through the tail vein (A), image of ex vivo distribution in tumor at different time points (B) and semiquantitative analysis of ex vivo distribution in tumor (C, n=3) at different time pointsc

    图  7  4T1原位移植瘤体积变化情况(A,n=5)、小鼠体质量变化情况(B,n=5)、离体肿瘤质量比较图(C,n=5)、离体肿廇图(D)和肿瘤组织切片HE染色图(E,标尺: 100 μm)

    *P<0.05, **P<0.01, ***P<0.001.

    Figure  7.  Tumor volume changes in orthotopic 4T1 tumor-bearing mice (A, n=5), changes of body weight of orthotopic 4T1 tumor-bearing mice (B, n=5), isolated tumor mass (C, n=5), isolated tumor images of orthotopic 4T1 tumor model (D), HE staining of tumor sections (E, scale bar=100 μm)

    表  1  GNP、GNP@HA-CD和GNP@HA-CD-DOX粒径分析

    Table  1.   Particle size and zeta potential of GNP, GNP@HA-CD and GNP@HA-CD-DOX

    SampleParticle size/nmPDIZeta potential/mV
    GNP 120.23±1.99 0.176±0.011 −5.30±0.22
    GNP@HA-CD 156.10±2.21 0.133±0.025 +11.53±0.31
    GNP@HA-CD-DOX 162.93±2.55 0.165±0.016 +10.70±0.36
     PDI: Polydispersity index.
    下载: 导出CSV

    表  2  血常规指标检测值

    Table  2.   Blood biochemistry results

    ItemnGroup
    HA-CD@DOXGNP@HA-CD-DOXPBS
    WBC/109 L−1 3 3.43±0.21 3.80±0.90 4.83±1.10
    RBC/1012 L−1 3 8.30±0.98 8.94±1.40 8.91±0.63
    HGB/(g/L) 3 120.33±18.18 144.00±14.00 126.67±7.09
    HCT/% 3 41.60±5.59 50.40±6.81 44.80±3.76
    MCV/fL 3 51.33±0.31 54.63±2.03 52.40±1.66
    MCH/pg 3 13.90±0.46 15.07±0.75 14.47±0.35
    MCHC/(g/L) 3 267.00±13.11 278.33±1.53 261.00±15.87
    PLT/109 L−1 3 684.00±273.65 691.67±108.26 706.00±313.96
     WBC: White blood cell count; RBC: Red blood cell count; HGB: Hemoglobin; HCT: Hematocrit; MCV: Mean corpusular volume; MCH: Mean corpusular hemoglobin; MCHC: Mean corpusular hemoglobin concentration; PLT: Platelet count.
    下载: 导出CSV
  • [1] ZHOU Q, DONG C, FAN W, et al. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials, 2020, 240: 119902[2020-02-18]. https://doi.org/10.1016/j.biomaterials.2020.119902.
    [2] LI Z, XIAO C, YONG T, et al. Influence of nanomedicine mechanical properties on tumor targeting delivery. Chem Soc Rev,2020,49(8): 2273–2290. doi: 10.1039/C9CS00575G
    [3] OJHA T, PATHANK V, SHI Y, et al. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv Drug Deliv Rev,2017,119: 44–60. doi: 10.1016/j.addr.2017.07.007
    [4] SUN Q, OJHA T, KIESSLING F, et al. Enhancing Tumor Penetration of Nanomedicines. Biomacromolecules,2017,18(5): 1449–1459. doi: 10.1021/acs.biomac.7b00068
    [5] WANG J, MAO W, LOCK L L, et al. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano,2015,9(7): 7195–7206. doi: 10.1021/acsnano.5b02017
    [6] 胡川, 高会乐. 肿瘤微环境响应性与调节性递药系统研究进展. 药学学报,2020,55(7): 1520–1527.
    [7] PARK H, SARAVANAKUMAR G, KIM J, et al. Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics. Adv Healthc Mater, 2021, 10(5): e2000834[2020-10-19]. https://doi.org/10.1002/adhm.202000834.
    [8] HE Q, CHEN J, YAN J, et al. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci,2020,15(4): 416–448. doi: 10.1016/j.ajps.2019.08.003
    [9] JIA N, LI W, LIU D, et al. Tumor microenvironment stimuli-responsive nanoparticles for programmed anticancer drug delivery. Mol Pharm,2020,17(5): 1516–1526. doi: 10.1021/acs.molpharmaceut.9b01189
    [10] CUN X, CHEN J, RUAN S, et al. A Novel strategy through combining iRGD peptide with tumor-microenvironment-responsive and multistage nanoparticles for deep tumor penetration. ACS Appl Mater Interfaces,2015,7(49): 27458–27466. doi: 10.1021/acsami.5b09391
    [11] CUN X, LI M, WANG S, et al. A size switchable nanoplatform for targeting the tumor microenvironment and deep tumor penetration. Nanoscale,2018,10(21): 9935–9948. doi: 10.1039/C8NR00640G
    [12] PANWAR N, SOEHARTONO A M, CHAN K K, et al. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem Rev,2019,119(16): 9559–9656. doi: 10.1021/acs.chemrev.9b00099
    [13] DU J, XU N, FAN J, et al. Carbon dots for in vivo bioimaging and theranostics. Small, 2019, 15(32): e1805087[2019-12-18]. https://doi.org/10.1002/smll.201805087.
    [14] LI J, LI M, TIAN L, et al. Facile strategy by hyaluronic acid functional carbon dot-doxorubicin nanoparticles for CD44 targeted drug delivery and enhanced breast cancer therapy. Int J Pharm, 2020, 578, 119122[2020-02-05]. https://doi.org/10.1016/j.ijpharm.2020.119122.
    [15] KAEMMERER E, MELCHELS F P W, HOLZAPFEL B M, et al. Gelatine methacrylamide-based hydrogels: An alternative three-dimensional cancer cell culture system. Acta Biomaterialia,2014,10(6): 2551–2562. doi: 10.1016/j.actbio.2014.02.035
    [16] 候博, 王当歌, 高晶, 等. 微环境激活型纳米递药系统用于肿瘤免疫治疗的研究进展. 药学学报,2019,54(10): 1802–1809.
    [17] COX T R. The matrix in cancer. Nat Rev Cancer,2021,21(4): 217–238. doi: 10.1038/s41568-020-00329-7
    [18] CABRAL H, MATSUMOTO Y, MIZUNO K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol,2011,6(12): 815–823. doi: 10.1038/nnano.2011.166
    [19] YAO Q, KOU L, TU Y, et al. MMP-responsive ‘Smart’ drug delivery and tumor targeting. Trends Pharmacol Sci,2018,39(8): 766–781. doi: 10.1016/j.tips.2018.06.003
    [20] EGEBLAD M, WERB Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer,2002,2(3): 161–174. doi: 10.1038/nrc745
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  55
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-05-26
  • 刊出日期:  2021-07-22

目录

    /

    返回文章
    返回