欢迎来到《四川大学学报(医学版)》

胱抑素C估算肾小球滤过率对人工肝治疗HBV相关性慢加急性肝衰竭短期预后的预测价值

王鹭 吴晓娟 蔡蓓 胥劲 魏彬 袁宇珊 黄珣钡 王婷婷 王旻晋 王兰兰

王鹭, 吴晓娟, 蔡蓓, 等. 胱抑素C估算肾小球滤过率对人工肝治疗HBV相关性慢加急性肝衰竭短期预后的预测价值[J]. 四川大学学报(医学版), 2021, 52(5): 862-867. doi: 10.12182/20210660104
引用本文: 王鹭, 吴晓娟, 蔡蓓, 等. 胱抑素C估算肾小球滤过率对人工肝治疗HBV相关性慢加急性肝衰竭短期预后的预测价值[J]. 四川大学学报(医学版), 2021, 52(5): 862-867. doi: 10.12182/20210660104
WANG Lu, WU Xiao-juan, CAI Bei, et al. Clinical Value of Cystatin C-Based Estimated Glomerular Filtration Rate in Assessing Short-Term Mortality in Patients with Hepatitis B Virus-Related Acute-on-Chronic Liver Failure Treated with Artificial Liver Support System[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 862-867. doi: 10.12182/20210660104
Citation: WANG Lu, WU Xiao-juan, CAI Bei, et al. Clinical Value of Cystatin C-Based Estimated Glomerular Filtration Rate in Assessing Short-Term Mortality in Patients with Hepatitis B Virus-Related Acute-on-Chronic Liver Failure Treated with Artificial Liver Support System[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 862-867. doi: 10.12182/20210660104

胱抑素C估算肾小球滤过率对人工肝治疗HBV相关性慢加急性肝衰竭短期预后的预测价值

doi: 10.12182/20210660104
基金项目: 国家自然科学基金青年基金(No. 81702002)和国家自然科学基金面上项目(No. 81871713、No. 81571561)资助
详细信息
    通讯作者:

    E-mail:wanglanlanhx@163.com

Clinical Value of Cystatin C-Based Estimated Glomerular Filtration Rate in Assessing Short-Term Mortality in Patients with Hepatitis B Virus-Related Acute-on-Chronic Liver Failure Treated with Artificial Liver Support System

More Information
  • 摘要:   目的  探讨胱抑素C估算肾小球滤过率(cystatin C-based estimated glomerular filtration rate, eGFR-CysC)对人工肝治疗的乙型肝炎病毒相关性慢加急性肝功能衰竭(hepatitis B virus-related acute-on-chronic liver failure, HBV-ACLF)预后的预测价值。  方法  回顾性收集我院364例人工肝治疗的HBV-ACLF住院患者,根据28 d死亡率将患者分为存活组269例和死亡组95例,分析临床资料和实验室数据对患者短期预后的价值。  结果  多因素Cox回归分析显示,基线eGFR-CysC水平低是HBV-ACLF患者28 d死亡率的独立风险因素之一(风险比=0.987;95%置信区间:0.979~0.996,P=0.003)。基线eGFR-CysC水平与终末期肝病模型评分(the model for end-stage liver disease, MELD)(r=−0.439,P<0.001)、MELD联合血清钠评分(r=−0.481,P<0.001)和慢性肝衰竭联盟-慢加急性肝衰竭预后评分(Chronic Liver Failure Consortium ACLF, CLIF-C ACLF)(r=−0.340,P<0.001)呈负相关。受试者工作特性(receiver operating characteristic, ROC)曲线分析示基线值,第一次、第二次、第三次使用人工肝治疗后的eGFR-CysC值判断患者28 d死亡与否的曲线下面积分别为0.639、0.697、0.716、0.749(P<0.001),eGFR-CysC最佳临界值分别为70.620、67.525、61.725、64.685 mL/(min·1.73 m2)。  结论  eGFR-CysC水平能辅助评价人工肝治疗HBV-ACLF患者短期死亡率,动态监测的临床应用价值更高。
  • 图  1  eGFR-CysC与预后模型MELD评分、MELD-Na评分和CLIF-C ACLF评分的相关性分析

    Figure  1.  Correlation analysis between eGFR-CysC and MELD score, MELD-Na score and CLIF-C ACLF score in HBV-ACLF patients

    eGFR-CysC, MELD, MELD-Na, CLIF-C ACLF: Denotes the same as those in Table 1.

    图  2  eGFR-Crea及eGFR-CysC评估HBV-ACLF患者28 d死亡率的ROC曲线分析

    Figure  2.  ROC curve analysis of eGFR-Crea and eGFR-CysC for assessing 28 d mortality in patients with HBV-ACLF

    eGFR-Crea, eGFR-CysC: The abbrevations denote the same as those in Table 1. HBV-ACLF: Hepatitis B virus-related acute-on-chronic liver failure; AUC: Area under the curve; ALSS: Artificial liver support system.

    图  3  按eGFR-CysC分层的28 d生存曲线分析

    Figure  3.  Kaplan-Meier analysis was made to compare the cumulative risk for eGFR-CysC

    A: Baseline eGFR-CysC; B: eGFR-CysC after the first ALSS; C: eGFR-CysC after the second ALSS; D: eGFR-CysC after the third ALSS. eGFR-CysC: The abbreviations denote the same as those in Table 1.

    表  1  纳入患者的基线特征和观察指标

    Table  1.   Baseline characteristics and observational indicators of patients enrolled in the study

    ItemSurvival group (n=269)Non-survival group (n=95)P
    Clinical characteristics
     Age/yr., median (P25-P75) 42.0 (32.0−50.0) 43.0 (37.0−52.0) 0.088
     Male/case (%) 240 (89.9) 90 (92.8) 0.541
     Cirrhosis/case (%) 210 (78.1) 79 (83.2) 0.376
     Bacterial infection/case (%) 181 (67.3) 72 (75.8) 0.154
     Gastrointestinal bleeding/case (%) 30 (11.2) 12 (12.6) 0.710
     Hepatic encephalopathy/case (%) 21 (7.9) 25 (25.8) <0.001
    Organ failure/case (%)
     Liver 245 (91.1) 92 (96.8) 0.070
     Kidney 4 (1.5) 6 (6.2) 0.023
     Coagulation 65 (24.3) 52 (53.6) <0.001
     Circulation 3 (1.1) 1 (1.0) 1.000
    Laboratory data
     TBIL/(mg/dL), median (P25-P75) 20.9 (14.8−26.4) 25.0 (20.5−31.3) <0.001
     ALT/(IU/L), median (P25-P75) 264.0 (94.5−753.0) 275.0 (107.0−803.0) 0.756
     AST/(IU/L), median (P25-P75) 198.0 (101.5−538.5) 280.0 (142.0−495.0) 0.197
     TP/(g/L), median (P25-P75) 60.0 (55.6−66.1) 58.3 (54.1−64.6) 0.042
     ALB/(g/L), median (P25-P75) 33.0 (30.5−36.1) 32.2 (29.7−34.9) 0.136
     GLB/(g/L), median (P25-P75) 26.7 (22.6−31.7) 25.3 (21.1−29.8) 0.082
     ALB/GLB (median [P25-P75] ) 1.25 (1.02−1.54) 1.33 (1.03−1.65) 0.271
     GGT/(IU/L), median (P25-P75) 75.0 (50.5−109.0) 66.0 (42.0−121.0) 0.640
     ALP/(IU/L), median (P25-P75) 144.0 (115.5−179.0) 146.0 (117.0−174.0) 0.955
     Crea/(mg/dL), median (P25-P75) 0.84 (0.70−1.00) 0.87 (0.73−1.12) 0.098
     eGFR-Crea/(mL/[min·1.73 m2]), median (P25-P75) 105.80 (89.31−117.82) 99.18 (78.66−114.13) 0.034
     CysC/(mg/L), median (P25-P75) 1.04 (0.92−1.18) 1.15 (0.98−1.37) <0.001
     eGFR-CysC/(mL/[min·1.73 m2]), median (P25-P75) 79.86 (63.72−95.00) 67.73 (53.60−82.47) <0.001
     INR (median [P25-P75]) 2.1 (1.8−2.5) 2.6 (2.2−3.3) <0.001
     FIB/(g/L), median (P25-P75) 1.38 (1.05−1.62) 1.12 (0.83−1.47) <0.001
     ATⅢ activity/%, median (P25-P75) 21.6 (15.1−27.4) 19.9 (14.1−25.0) 0.211
     RBC/(1012 L−1), median (P25-P75) 4.2 (3.7−4.6) 4.1 (3.7−4.5) 0.449
     PLT/(109 L−1), median (P25-P75) 97.0 (74.0−135.0) 80.0 (57.5−116.7) 0.007
     WBC/(109 L−1), median (P25-P75) 6.5 (5.1−8.4) 8.3 (6.3−11.1) <0.001
     HBV-DNA/(lg IU/mL), median (P25-P75) 5.40 (3.83−7.12) 5.23 (3.87−6.57) 0.280
     HBeAg/case (%) 93 (34.6) 40 (42.1) 0.270
    Scores (median [P25-P75])
     MELD 24.4 (22.0−27.8) 28.9 (25.5−32.4) <0.001
     MELD-Na 25.0 (22.8−29.1) 30.7 (26.9−36.4) <0.001
     CLIF-C ACLF 37.9 (33.1−42.4) 43.5 (39.2−46.6) <0.001
     TBIL: Total bilirubin; ALT: Alanine aminotransferase; AST: Aspartate transaminase; TP: Total protein; ALB: Albumin; GLB: Globulin; GGT: γ-glutamyl transpeptidase; ALP: Alkaline phosphate; Crea: Creatinine; eGFR-Crea: Creatinine-based estimated glomerular filtration rate; CysC: Cystatin C; eGFR-CysC: Cystatin C-based estimated glomerular filtration rate; INR: International normalized radio; FIB: Fibrinogen; ATⅢ: Thrombin antithrombin Ⅲ; RBC: Red blood cell; PLT: Platelet; WBC: White blood cell; HBV-DNA: Hepatitis B-DNA; HBeAg: Hepatitis B-e antigen; MELD: The model for end-stage liver disease; MELD-Na: The model for end-stage liver disease plus sodium; CLIF-C ACLF: Chronic Liver Failure Consortium ACLF.
    下载: 导出CSV

    表  2  人工肝治疗HBV-ACLF患者eGFR-CysC水平动态变化比较〔中位数(P25~P75)〕

    Table  2.   Dynamic measurements of eGFR-CysC levels of HBV-ACLF patients based on ALSS treatment (median [P25-P75])

    Number of ALSSeGFR-CysC/(mL/[min·1.73 m2])Decreased rate of eGFR-CysC (compare to baseline level)/%
    Survival group
    (n=369)
    Non-survival group
    (n=95)
    PSurvival group
    (n=369)
    Non-survival group
    (n=95)
    P
    1 74.23 (55.86−88.64) 54.47 (34.95−71.22) <0.001 4.80 (4.25−18.67) 18.89 (4.16−34.86) <0.001
    2 72.34 (56.42−87.40) 50.79 (31.47−62.22) <0.001 7.93 (2.84−22.06) 27.68 (12.43−37.47) <0.001
    3 71.46 (55.07−86.81) 50.39 (32.42−63.35) <0.001 8.91 (4.30−20.89) 25.98 (10.34−43.46) <0.001
     ALSS denotes the same term as the one in Fig 2; eGFR-CysC denotes the same term as the one in Table 1.
    下载: 导出CSV
  • [1] MOREAU R, CLÀRIA J, AGUILAR F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J Hepatol,2020,72(6): 1218–1220. doi: 10.1016/j.jhep.2020.03.002
    [2] PEREIRA G, BALDIN C, PIEDADE J, et al. Combination and sequential evaluation of acute-on-chronic liver failure (ACLF) and hyponatremia and prognosis in cirrhotic patients. Dig Liver Dis,2020,52(1): 91–97. doi: 10.1016/j.dld.2019.08.013
    [3] JIA Y, MA L, WANG Y, et al. NLRP3 inflammasome and related cytokines reflect the immune status of patients with HBV-ACLF. Mol Immunol,2020,120: 179–186. doi: 10.1016/j.molimm.2020.01.011
    [4] SETO W K, LAI C L, YUEN M F. Acute-on-chronic liver failure in chronic hepatitis B. J Gastroenterol Hepatol,2012,27(4): 662–669. doi: 10.1111/j.1440-1746.2011.06971.x
    [5] CHANG Y, LIU Q Y, ZHANG Q, et al. Role of nutritional status and nutritional support in outcome of hepatitis B virus-associated acute-on-chronic liver failure. World J Gastroenterol,2020,26(29): 4288–4301. doi: 10.3748/wjg.v26.i29.4288
    [6] QIN G, BIAN Z L, SHEN Y, et al. Logistic regression model can reduce unnecessary artificial liver support in hepatitis B virus-associated acute-on-chronic liver failure: Decision curve analysis. BMC Med Inform Decis Mak, 2016, 16: 59[2020-10-10]. https://pubmed.ncbi.nlm.nih.gov/27260306/. doi: 10.1186/s12911-016-0302-7.
    [7] QIN G, SHAO J G, WANG B, et al. Artificial liver support system improves short- and long-term outcomes of patients with HBV-associated acute-on-chronic liver failure: A single-center experience. Medicine (Baltimore), 2014, 93(28): e338[2020-10-10]. https://pubmed.ncbi.nlm.nih.gov/25526495/. doi: 10.1097/MD.0000000000000338.
    [8] WAN Z, WU Y, YI J, et al. Combining serum cystatin C with total bilirubin improves short-term mortality prediction in patients with HBV-related acute-on-chronic liver failure. PLoS One, 2015, 10(1): e0116968[2020-10-10]. https://pubmed.ncbi.nlm.nih.gov/27260306/. doi: 10.1371/journal.pone.0116968.
    [9] WAN Z H, WANG J J, YOU S L, et al. Cystatin C is a biomarker for predicting acute kidney injury in patients with acute-on-chronic liver failure. World J Gastroenterol,2013,19(48): 9432–9438. doi: 10.3748/wjg.v19.i48.9432
    [10] MARKWARDT D, HOLDT L, STEIB C, et al. Plasma cystatin C is a predictor of renal dysfunction, acute-on-chronic liver failure, and mortality in patients with acutely decompensated liver cirrhosis. Hepatology,2017,66(4): 1232–1241. doi: 10.1002/hep.29290
    [11] YOO J J, KIM S G, KIM Y S, et al. Estimation of renal function in patients with liver cirrhosis: Impact of muscle mass and sex. J Hepatol,2019,70(5): 847–854. doi: 10.1016/j.jhep.2018.12.030
    [12] XIROUCHAKIS E, MARELLI L, CHOLONGITAS E, et al. Comparison of cystatin C and creatinine-based glomerular filtration rate formulas with 51Cr-EDTA clearance in patients with cirrhosis. Clin J Am Soc Nephrol,2011,6(1): 84–92. doi: 10.2215/CJN.03400410
    [13] SARIN S K, CHOUDHURY A, SHARMA M K, et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific Association for the study of the liver (APASL): an update. Hepatol Int,2019,13(4): 353–390. doi: 10.1007/s12072-019-09946-3
    [14] JALAN R, SALIBA F, PAVESI M, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol,2014,61(5): 1038–1047. doi: 10.1016/j.jhep.2014.06.012
    [15] WANG J, XIE P, HUANG J M, et al. The new Asian modified CKD-EPI equation leads to more accurate GFR estimation in Chinese patients with CKD. Int Urol Nephrol,2016,48(12): 2077–2081. doi: 10.1007/s11255-016-1386-9
    [16] MICHALAK A, CICHOŻ-LACH H, GUZ M, et al. Towards an evaluation of alcoholic liver cirrhosis and nonalcoholic fatty liver disease patients with hematological scales. World J Gastroenterol,2020,26(47): 7538–7549. doi: 10.3748/wjg.v26.i47.7538
    [17] MARRONI C P, DE MELLO BRANDÃO A B, HENNIGEN A W, et al. MELD scores with incorporation of serum sodium and death prediction in cirrhotic patients on the waiting list for liver transplantation: A single center experience in southern Brazil. Clin Transplant,2012,26(4): 395–401. doi: 10.1111/j.1399-0012.2012.01688.x
    [18] KIM H Y, CHANG Y, PARK J Y, et al. Characterization of acute-on-chronic liver failure and prediction of mortality in Asian patients with active alcoholism. J Gastroenterol Hepatol,2016,31(2): 427–433. doi: 10.1111/jgh.13084
    [19] NIE Y, ZHANG Y, LIU L X, et al. Serum lactate level predicts short-term and long-term mortality of HBV-ACLF patients: A prospective study. Ther Clin Risk Manag,2020,16: 849–860. doi: 10.2147/TCRM.S272463
    [20] ARROYO V, MOREAU R, JALAN R, et al. Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis. J Hepatol,2015,62(1 Suppl): S131–S143. doi: 10.1016/j.jhep.2014.11.045
    [21] XIAO L L, XU X W, HUANG K Z, et al. Artificial liver support system improves short-term outcomes of patients with HBV-associated acute-on-chronic liver failure: A propensity score analysis. Biomed Res Int, 2019, 2019: 3757149[2020-10-10]. https://pubmed.ncbi.nlm.nih.gov/27260306/. doi: 10.1155/2019/3757149.
    [22] JALAN R, GINES P, OLSON J C, et al. Acute-on chronic liver failure. J Hepatol,2012,57(6): 1336–1348. doi: 10.1016/j.jhep.2012.06.026
    [23] ADACHI M, TANAKA A, AISO M, et al. Benefit of cystatin C in evaluation of renal function and prediction of survival in patients with cirrhosis. Hepatol Res,2015,45(13): 1299–1306. doi: 10.1111/hepr.12508
    [24] CÁRDENAS A, GINÈS P. Acute-on-chronic liver failure: The kidneys. Curr Opin Crit Care,2011,17(2): 184–189. doi: 10.1097/MCC.0b013e328344b3da
    [25] BEBEN T, RIFKIN D E. GFR estimating equations and liver disease. Adv Chronic Kidney Dis,2015,22(5): 337–342. doi: 10.1053/j.ackd.2015.05.003
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 修回日期:  2021-02-02
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回