欢迎来到《四川大学学报(医学版)》

骨组织工程中纳米羟基磷灰石的仿生合成研究进展

仇旭童 饶晨煜 李婷 周蓉卉

仇旭童, 饶晨煜, 李婷, 等. 骨组织工程中纳米羟基磷灰石的仿生合成研究进展[J]. 四川大学学报(医学版), 2021, 52(5): 740-746. doi: 10.12182/20210560201
引用本文: 仇旭童, 饶晨煜, 李婷, 等. 骨组织工程中纳米羟基磷灰石的仿生合成研究进展[J]. 四川大学学报(医学版), 2021, 52(5): 740-746. doi: 10.12182/20210560201
QIU Xu-tong, RAO Chen-yu, LI Ting, et al. Research Progress in Biomimetic Synthesis of Nano-Hydroxyapatite in Bone Tissue Engineering[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 740-746. doi: 10.12182/20210560201
Citation: QIU Xu-tong, RAO Chen-yu, LI Ting, et al. Research Progress in Biomimetic Synthesis of Nano-Hydroxyapatite in Bone Tissue Engineering[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(5): 740-746. doi: 10.12182/20210560201

骨组织工程中纳米羟基磷灰石的仿生合成研究进展

doi: 10.12182/20210560201
基金项目: 四川省科技厅计划(No. 2020JDRC0056)资助
详细信息
    通讯作者:

    E-mail:zhouronghui@scu.edu.cn

Research Progress in Biomimetic Synthesis of Nano-Hydroxyapatite in Bone Tissue Engineering

More Information
  • 摘要: 纳米羟基磷灰石(nano-hydroxyapatite, nHAp)是人体骨、牙无机组成的主要成分,具有优异的生物相容性、生物活性和生物亲和性,可诱导骨组织再生,已广泛应用于骨缺损修复与替代等骨组织工程领域。由于其组成中含有能通过人体正常的新陈代谢途径进行置换的钙、磷等元素,植入体内后可部分或全部被人体组织吸收和取代,能很好地辅助骨的生长,是一种理想的骨修复材料。然而,传统的nHAp陶瓷材料具有一定的脆性且体内降解性差。此外,由于羟基磷灰石纳米粒子表面能大,易发生团聚,导致材料的稳定性差,植入体内后力学强度衰减快,限制了其临床应用。目前,通过负载相关生长因子、蛋白和多肽等活性分子,可有效提高单纯nHAp的力学性能及生物相容性,从而使其更符合骨修复材料的生物学要求。但传统的物理或化学修饰方法步骤繁琐,修饰过程可导致nHAp生物活性受到干扰。近年来,直接利用生物大分子或者微生物活体自身的分子识别和自组装能力来制备纳米材料的仿生合成方法不仅简单,且合成的纳米材料性质稳定。对于nHAp而言,因其独特的晶体结构及理化性能,已有大量研究表明可利用其与生物分子之间的亲和性,通过仿生合成的方法制得具有一定生物活性的nHAp。仿生合成nHAp有望成为主流骨组织工程支架材料,分析和归纳不同nHAp材料的仿生合成过程及其特性,对进一步开发机械、生物学等性能更优的骨缺损修复材料具有一定的指导作用。本文综述了基于不同生物分子模板,仿生合成nHAp的方法,并进一步讨论其在骨组织工程中的应用研究进展,为新一代骨修复生物材料的研发提供参考。
  • 图  1  基于不同生物分子模板仿生合成nHAp

    Figure  1.  Biomimetic synthesis of nHAp based on different biomolecular templates

  • [1] PINA S, OLIVEIRA J M, REIS R L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater,2015,27(7): 1143–1169. doi: 10.1002/adma.201403354
    [2] 周陈晨, 吴祖平, 邹淑娟. 信号通路调控骨髓间充质干细胞成骨分化的研究. 四川大学学报(医学版),2020,51(6): 777–782. doi: 10.12182/20201160103
    [3] NOORI A, ASHRAFI S J, VAEZ-GHAEMI R, et al. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine,2017,12: 4937–4961. doi: 10.2147/IJN.S124671
    [4] GRITSCH L, MAQBOOL M, MOURIÑO V, et al. Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B,2019,7(40): 6109–6124. doi: 10.1039/C9TB00897G
    [5] 高筱萌, 高海. 生物纳米材料在骨组织工程中的研究进展. 口腔医学研究,2019,35(6): 524–526.
    [6] PALMER L C, NEWCOMB C J, KALTZ S R, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev,2008,108(11): 4754–4783. doi: 10.1021/cr8004422
    [7] BORDEA I R, CANDREA S, ALEXESCU G T, et al. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev,2020,52(2): 319–332. doi: 10.1080/03602532.2020.1758713
    [8] ZHOU H, LEE J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater,2011,7(7): 2769–2781. doi: 10.1016/j.actbio.2011.03.019
    [9] HABRAKEN W, HABIBOVIC P, EPPLE M, et al. Calcium phosphates in biomedical applications: materials for the future? Mater Today,2016,19(2): 69–87. doi: 10.1016/j.mattod.2015.10.008
    [10] EPPLE M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater,2018,77: 1–14. doi: 10.1016/j.actbio.2018.07.036
    [11] ZHOU R, LI Y, XIAO D, et al. Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging. J Mater Chem B,2020,8(10): 2107–2114. doi: 10.1039/C9TB02787D
    [12] 庞富文, 蔡华伟, 李玉豪, 等. 放射性131I标记胶原-壳聚糖复合微球的制备及其杀伤肝癌细胞的体内研究. 四川大学学报(医学版),2018,49(1): 24–28.
    [13] HUANG M J, LI T J, ZHAO N R, et al. Doping strontium in tricalcium phosphate microspheres using yeast-based biotemplate. Mater Chem Phys,2014,147(3): 540–544. doi: 10.1016/j.matchemphys.2014.05.028
    [14] HUANG L, ZHANG J, HU J, et al. Biomimetic gelatin methacrylate/nano fish bone hybrid hydrogel for bone regeneration via osteoimmunomodulation. ACS Biomater Sci Eng,2020,6(6): 3270–3274. doi: 10.1021/acsbiomaterials.0c00443
    [15] ZIA I, MIRZA S, JOLLY R, et al. Trigonella foenum graecum seed polysaccharide coupled nano hydroxyapatite-chitosan: A ternary nanocomposite for bone tissue engineering. Int J Biol Macromol,2019,124: 88–101. doi: 10.1016/j.ijbiomac.2018.11.059
    [16] 宋华, 任向前, 未东兴. 纳米羟基磷灰石对缺损骨再生的影响. 中国组织工程研究,2015,19(8): 1155–1159.
    [17] PASTORINO L, DELLACASA E, SCAGLIONE S, et al. Oriented collagen nanocoatings for tissue engineering. Colloids Surf B Biointerfaces,2014,114: 372–378. doi: 10.1016/j.colsurfb.2013.10.026
    [18] QI C, ZHU Y J, LU B Q, et al. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption. J Mater Chem,2012,22(42): 22642–22650. doi: 10.1039/c2jm35280j
    [19] QI C, ZHU Y J, ZHAO X Y, et al. Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chemistry,2013,19(3): 981–987. doi: 10.1002/chem.201202829
    [20] WAN Y Z, HUANG Y, YUAN C D,et al. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C,2007,27(4): 855–864. doi: 10.1016/j.msec.2006.10.002
    [21] HE D, XIAO X, LIU F, et al. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite. Appl Surf Sci,2008,255(2): 361–364. doi: 10.1016/j.apsusc.2008.06.151
    [22] SADJADI M A, MESKINFAM M, SADEGHI B, et al. In situ biomimetic synthesis and characterization of nano hydroxyapatite in gelatin matrix. J Biomed Nanotechnol,2011,7(3): 450–454. doi: 10.1166/jbn.2011.1305
    [23] KIKUCHI M, ITOH S, ICHINOSE S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials,2001,22(13): 1705–1711. doi: 10.1016/S0142-9612(00)00305-7
    [24] LIU X, SMITH L A, HU J, et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials,2009,30(12): 2252–2258. doi: 10.1016/j.biomaterials.2008.12.068
    [25] FANG C H, LIN Y W, LIN F H, et al. Biomimetic synthesis of nanocrystalline hydroxyapatite composites: Therapeutic potential and effects on bone regeneration. Int J Mol Sci,2019,20(23): 6002. doi: 10.3390/ijms20236002
    [26] DING Z, HAN H, FAN Z, et al. Nanoscale silk-hydroxyapatite hydrogels for injectable bone biomaterials. ACS Appl Mater Inter,2017,9(20): 16913–16921. doi: 10.1021/acsami.7b03932
    [27] LIU H, XU G W, WANG Y F, et al. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials,2015,49: 103–112. doi: 10.1016/j.biomaterials.2015.01.017
    [28] THEIN-HAN W W, MISRA R D K. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater,2009,5(4): 1182–1197. doi: 10.1016/j.actbio.2008.11.025
    [29] ZHANG Y, VENUGOPAL J R, EL-TURKI A, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials,2008,29(32): 4314–4322. doi: 10.1016/j.biomaterials.2008.07.038
    [30] MESKINFAM M, SADJADI M A, JAZDARREH H, et al. Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol,2011,7(3): 455–459. doi: 10.1166/jbn.2011.1306
    [31] SADJADI M S, MESKINFAM M, SADEGHI B, et al. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Mater Chem Phys,2010,124(1): 217–222. doi: 10.1016/j.matchemphys.2010.06.022
    [32] YANG F, WOLKE J G C, JANSEN J A. Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering. Chem Engineer J,2008,137(1): 154–161. doi: 10.1016/j.cej.2007.07.076
    [33] MAVIS B, DEMIRTAŞ T T, GÜMÜŞDERELIOĞLU M, et al. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater,2009,5(8): 3098–3111. doi: 10.1016/j.actbio.2009.04.037
    [34] PENG F, YU X, WEI M. In vitro cell performance on hydroxyapatite particles/poly(L-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomater,2011,7(6): 2585–2592. doi: 10.1016/j.actbio.2011.02.021
    [35] UPADHYAY D J, CUI N Y, ANDERSON C A, et al. A comparative study of the surface activation of polyamides using an air dielectric barrier discharge. Colloid Surface A,2004,248(1/2/3): 47–56. doi: 10.1016/j.colsurfa.2004.08.016
    [36] WANG H, LI Y, ZUO Y, et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials,2007,28(22): 3338–3348. doi: 10.1016/j.biomaterials.2007.04.014
    [37] GUO X, YU L, CHEN L, et al. Organoamine-assisted biomimetic synthesis of faceted hexagonal hydroxyapatite nanotubes with prominent stimulation activity for osteoblast proliferation. J Mater Chem B,2014,2(13): 1760–1763. doi: 10.1039/C3TB21652G
    [38] DU C, CUI F Z, ZHANG W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res,2000,50(4): 518–527. doi: 10.1002/(SICI)1097-4636(20000615)50:4<518::AID-JBM7>3.0.CO;2-W
    [39] LI M, ZHANG X, JIA W, et al. Improving in vitro biocompatibility on biomimetic mineralized collagen bone materials modified with hyaluronic acid oligosaccharide. Mater Sci Eng C,2019,104: 110008[2020-12-21]. https://doi.org/10.1016/j.msec.2019.110008. doi: 10.1016/j.msec.2019.110008
    [40] GAO X, SONG J, JI P, et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering. ACS Appl Mater Inter,2016,8(5): 3499–3515. doi: 10.1021/acsami.5b12413
    [41] ZHAO Y, LI Z, JIANG Y, et al. Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. Acta Biomater,2020,113: 614–626. doi: 10.1016/j.actbio.2020.06.024
    [42] WANG J, WU D, ZHANG Z, et al. Biomimetically ornamented rapid prototyping fabrication of an apatite-collagen-polycaprolactone composite construct with nano-micro-macro hierarchical structure for large bone defect treatment. ACS Appl Mater Inter,2015,7(47): 26244–26256. doi: 10.1021/acsami.5b08534
  • 加载中
图(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  32
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 修回日期:  2021-04-01
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2021-09-20

目录

    /

    返回文章
    返回