Volume 52 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WU Qi-sheng, LIU Pei-shen, YANG Cui-ping, et al. A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 50-56. doi: 10.12182/20210160504
Citation: WU Qi-sheng, LIU Pei-shen, YANG Cui-ping, et al. A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 50-56. doi: 10.12182/20210160504

A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor

doi: 10.12182/20210160504
More Information
  • Corresponding author: E-mail: ybchen@mail.kiz.ac.cn
  • Received Date: 2020-10-28
  • Rev Recd Date: 2020-12-17
  • Publish Date: 2021-01-20
  • Historically, the Cambrian explosion was a major life evolution event caused by changes of natural environmental oxygen concentration. The use of oxygen was part of the basic survival instinct of higher life, which evolved a complex regulation system in response to variant levels of oxygen concentration. Hypoxia is one of the typical environmental characteristics in plateau areas. After long-term natural selection in hypoxic conditions, numerous species living in plateau areas have evolved unique mechanisms adapted to hypoxia. Recent studies have found that there are some similarities in adaptation to hypoxia between the animals in highland and different types of human solid tumor cells. Herein, we will summarize recent findings about the hypoxia adaptation evolution in high-altitude animals and the characteristics of hypoxic solid tumors, especially the reactive oxygen species responses in hypoxic solid tumors. We believe that deciphering the underlying molecular mechanisms involved in hypoxia adaptation in highland will facilitate the identification of new genes or biomarkers critical for research on hypoxic solid tumors in the future.
  • loading
  • [1]
    朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学,2019,49(10): 1455–1490. doi: 10.1007/s11430-019-9508-4
    FOX D. What sparked the Cambrian explosion? Nature,2016,530(7590): 268–270. doi: 10.1038/530268a
    IVAN M, KAELIN W G, Jr. The EGLN-HIF O(2)-sensing system: multiple inputs and feedbacks. Mol Cel,2017,66(6): 772–779. doi: 10.1016/j.molcel.2017.06.002
    SEMENZA G L, RUE E A, IYER N V, et al. Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics,1996,34(3): 437–439. doi: 10.1006/geno.1996.0311
    WU T Y. Life on the high Tibetan plateau. High Alt Med Biol,2004,5(1): 1–2. doi: 10.1089/152702904322963609
    QI X, CUI C, PENG Y, et al. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau. Mol Biol Evol, 2013, 30(8): 1761-1778.
    吴天一. 高原低氧环境对人类的挑战. 医学研究杂志,2006(10): 1–3.
    KAPPLER M, TAUBERT H , ECKERT A W. Oxygen sensing, homeostasis, and disease. N Engl J med,2011,365(6): 537–547. doi: 10.1056/NEJMc1110602
    CAIRNS R A, HARRIS I S, MAK T W. Regulation of cancer cell metabolism. Nat Rev Cancer,2011,11(2): 85–95.
    JING X, YANG F, SHAO C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer,2019,18(1): 157[2020-12-15].https://doi.org/10.1186/s12943-019-1089-9. doi: 10.1186/s12943-019-1089-9
    GILKES D M, SEMENZA G L, WIRTZ D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer,2014,14(6): 430–439. doi: 10.1038/nrc3726
    BEALL C M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Nati Acad Sci U S A,2007,104(Suppl 1): 8655–8660. doi: 10.1073/pnas.0701985104
    CHIRAT R, MOULTON D E, GORIELY A. Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc Nati Acad Sci U S A,2013,110(15): 6015–6020. doi: 10.1073/pnas.1220443110
    张天留, 高雪, 徐凌洋, 等. 高原家养动物环境适应性的研究进展. 畜牧兽医学报,2020,51(7): 1475–1487.
    FENG S, MA J, LONG K, et al. Comparative microRNA Transcriptomes in domestic goats reveal acclimatization to high altitude. Front Genet, 2020, 11: 809[2020-12-15]. https://doi.org/10.3389/fgene.2020.00809.
    THIERSCH M, SWENSON E R. High altitude and cancer mortality. High Alt Med Biol,2018,19(2): 116–123. doi: 10.1089/ham.2017.0061
    ZHOU M, WANG H, ZHU J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet,2016,387(10015): 251–272. doi: 10.1016/S0140-6736(15)00551-6
    BAKER P T, LITTLE M A. Man in the Andes. Stroudsburg: Dowden, Hutchinson & Ross, 1976.
    COSIO G. Hematic and cardiopulmonary characteristics of the Andean miner. Bol Oficina Sanit Panam,1972,72(6): 547–557.
    BEALL C M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol,2006,46(1): 18–24. doi: 10.1093/icb/icj004
    GARRUTO R M, CHIN C T, WEITZ C A, et al. Hematological differences during growth among Tibetans and Han Chinese born and raised at high altitude in Qinghai, China. Am J Phys Anthropol,2003,122(2): 171–183. doi: 10.1002/ajpa.10283
    BEALL C M, SONG K, ELSTON R C, et al. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4 000 m. Proc Nati Acad Sci U S A,2004,101(39): 14300–14304. doi: 10.1073/pnas.0405949101
    UDPA N, RONEN R, ZHOU D, et al. Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol,2014,15(2): R36[2020-12-15]. https://doi.org/10.1186/gb-2014-15-2-r36. doi: 10.1186/gb-2014-15-2-r36
    LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol,2020,21(5): 268–283. doi: 10.1038/s41580-020-0227-y
    XIONG Q, LIU B, DING M, et al. Hypoxia and cancer related pathology. Cancer Lett,2020,486: 1–7. doi: 10.1016/j.canlet.2020.05.002
    CAMUZI D, DE AMORIM Í S S, RIBEIRO PINTO L F, et al. Regulation is in the air: the relationship between hypoxia and epigenetics in cancer. Cells, 2019, 8(4): 300[2020-12-15]. https://doi.org/10.3390/cells8040300.
    RANKIN E B, GIACCIA A J. Hypoxic control of metastasis. Science,2016,352(6282): 175–180. doi: 10.1126/science.aaf4405
    SULLIVAN L B, GUI D Y, VANDER HEIDEN M G. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer,2016,16(11): 680–693. doi: 10.1038/nrc.2016.85
    PAVLOVA N N, THOMPSON C B. The emerging hallmarks of cancer metabolism. Cell Metab,2016,23(1): 27–47. doi: 10.1016/j.cmet.2015.12.006
    FAUBERT B, LI K Y, CAI L, et al. Lactate metabolism in human lung tumors. Cell,2017,171(2): 358–371. doi: 10.1016/j.cell.2017.09.019
    VAUPEL P, SCHLENGER K, KNOOP C, et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res,1991,51(12): 3316–3322.
    VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science,2009,324(5930): 1029–1033. doi: 10.1126/science.1160809
    BÖHME I, BOSSERHOFF A K. Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res,2016,29(5): 508–523. doi: 10.1111/pcmr.12495
    SEMENZA G L, NEJFELT M K, CHI S M, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc NatiAcad Sci U S A,1991,88(13): 5680–5684. doi: 10.1073/pnas.88.13.5680
    IVAN M, KONDO K, YANG H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science,2001,292(5516): 464–468. doi: 10.1126/science.1059817
    JAAKKOLA P, MOLE D R, TIAN Y M, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science,2001,292(5516): 468–472. doi: 10.1126/science.1059796
    THOMPSON C B. Into thin air: how we sense and respond to hypoxia. Cell,2016,167(1): 9–11. doi: 10.1016/j.cell.2016.08.036
    GOEL H L, MERCURIO A M. VEGF targets the tumour cell. Nat Rev Cancer,2013,13(12): 871–882. doi: 10.1038/nrc3627
    SANG N, STIEHL D P, BOHENSKY J, et al. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem,2003,278(16): 14013–14019. doi: 10.1074/jbc.M209702200
    FORSYTHE J A, JIANG B H, IYER N V, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol,1996,16(9): 4604–4613. doi: 10.1128/mcb.16.9.4604
    MAK P, LEAV I, PURSELL B, et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell,2010,17(4): 319–332. doi: 10.1016/j.ccr.2010.02.030
    ZHU J, THOMPSON C B. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol,2019,20(7): 436–450. doi: 10.1038/s41580-019-0123-5
    GODET I, SHIN Y J, JU J A, et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun,2019,10(1): 4862[2020-12-15]. https://doi.org/10.1038/s41467-019-12412-1. doi: 10.1038/s41467-019-12412-1
    SHI Y, FAN S, WU M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun,2019,10(1): 4892[2020-12-15]. https://doi.org/10.1038/s41467-019-12801-6. doi: 10.1038/s41467-019-12801-6
    PRASAD S, GUPTA S C, TYAGI A K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett,2017,387: 95–105. doi: 10.1016/j.canlet.2016.03.042
    CHANDEL N S. Mitochondrial complex Ⅲ: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol,2010,174(3): 175–181. doi: 10.1016/j.resp.2010.08.004
    PAULSEN C E, CARROLL K S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev,2013,113(7): 4633–4679. doi: 10.1021/cr300163e
    KOBAYASHI M, YAMAMOTO M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul,2006,46: 113–140. doi: 10.1016/j.advenzreg.2006.01.007
    KLAUNIG J E, XU Y, ISENBERG J S, et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect,1998,106(Suppl 1): 289–295. doi: 10.1289/ehp.98106s1289
    ZHOU L, ZHANG Z, HUANG Z, et al. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. Mol Biom,2020,1(1): 4[2020-12-15]. https://doi.org/10.1186/s43556-020-00004-1. doi: 10.1186/s43556-020-00004-1
    ZHANG J, WANG X, VIKASH V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev,2016,2016: 4350965[2020-12-11]. https://doi.org/10.1155/2016/4350965. doi: 10.1155/2016/4350965
    MAULIK N, DAS D K. Redox signaling in vascular angiogenesis. Free Radic Biol Med,2002,33(8): 1047–1060. doi: 10.1016/s0891-5849(02)01005-5
    SHIMOJO Y, AKIMOTO M, HISANAGA T, et al. Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clin Exp Metastasis,2013,30(2): 143–154. doi: 10.1007/s10585-012-9519-8
    LIU Y, GUO J Z, LIU Y, et al. Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth. Nat Commun,2018,9(1): 4429[2020-12-15]. https://doi.org/10.1038/s41467-018-06841-7. doi: 10.1038/s41467-018-06841-7
    HEGDE P S, CHEN D S. Top 10 challenges in cancer immunotherapy. Immunity,2020,52(1): 17–35. doi: 10.1016/j.immuni.2019.12.011
    PALAZON A, GOLDRATH A W, NIZET V, et al. HIF transcription factors, inflammation, and immunity. Immunity,2014,41(4): 518–528. doi: 10.1016/j.immuni.2014.09.008
    RENNER K, SINGER K, KOEHL G E, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol,2017,8: 248[2020-12-15]. https://doi.org/10.3389/fimmu.2017.00248. doi: 10.3389/fimmu.2017.00248
    PALAZON A, TYRAKIS P A, MACIAS D, et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell,2017,32(5): 669–683. doi: 10.1016/j.ccell.2017.10.003
    KRZYWINSKA E, KANTARI-MIMOUN C, KERDILES Y, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun,2017,8(1): 1597[2020-12-15].https://doi.org/10.1038/s41467-017-01599-w. doi: 10.1038/s41467-017-01599-w
    WENES M, SHANG M, DI MATTEO M, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab,2016,24(5): 701–715. doi: 10.1016/j.cmet.2016.09.008
    ANDO N, HARA M, SHIGA K, et al. Eicosapentaenoic acid suppresses angiogenesis via reducing secretion of IL-6 and VEGF from colon cancer-associated fibroblasts. Oncol Rep,2019,42(1): 339–349. doi: 10.3892/or.2019.7141
    LIU N, LUO J, KUANG D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest,2019,129(2): 631–646. doi: 10.1172/JCI123027
    CLEVER D, ROYCHOUDHURI R, CONSTANTINIDES M G, et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell,2016,166(5): 1117–1131. doi: 10.1016/j.cell.2016.07.032
    JOHNSTON R J, SU L J, PINCKNEY J, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature,2019,574(7779): 565–570. doi: 10.1038/s41586-019-1674-5
    XIN J, ZHANG H, HE Y, et al. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat Commun,2020,11(1): 4928[2020-12-15].https://doi.org/10.1038/s41467-020-18638-8. doi: 10.1038/s41467-020-18638-8
    LI Y, WANG M S, OTECKO N O, et al. Hypoxia potentially promotes Tibetan longevity. Cell Res,2017,27(2): 302–305. doi: 10.1038/cr.2016.105
    LI Y, WU D D, BOYKO A R, et al. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Mol Biol Evol,2014,31(5): 1200–1205. doi: 10.1093/molbev/msu070
    PENG Y, CUI C, HE Y, et al. Down-regulation of EPAS1 transcription and genetic adaptation of tibetans to high-altitude hypoxia. Mol Biol Evol,2017,34(4): 818–830. doi: 10.1093/molbev/msw280
    XU X H, BAO Y, WANG X, et al. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J,2018,32(12): fj201700715[2020-12-15]. https://doi.org/10.1096/fj.201700715. doi: 10.1096/fj.201700715
    陈丽华, 朱婕曼, 刘玉凤, 等. miR-34、MDM2、EPAS1在子宫内膜癌中的表达及与临床特征的相关性分析. 解放军医药杂志,2020,32(7): 38–42.
    SIMONSON T S, YANG Y, HUFF C D, et al. Genetic evidence for high-altitude adaptation in Tibet. Science,2010,329(5987): 72–75. doi: 10.1126/science.1189406
    LI Z, ZHOU W, ZHANG Y, et al. ERK Regulates HIF1α-mediated platinum resistance by directly targeting PHD2 in ovarian cancer. Clin Can Res,2019,25(19): 5947–5960. doi: 10.1158/1078-0432.CCR-18-4145
    CAO Y, LIN S H, WANG Y, et al. Glutamic pyruvate transaminase GPT2 promotes tumorigenesis of breast cancer cells by activating sonic hedgehog signaling. Theranostics,2017,7(12): 3021–3033. doi: 10.7150/thno.18992
    WU D D, YANG C P, WANG M S, et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Nat Sci Rev,2019,7(6): 952–963. doi: 10.1093/molbev/msz158
    YU L, WANG G D, RUAN J, et al. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet,2016,48(8): 947–952. doi: 10.1038/ng.3615
    XU P, JIANG L, YANG Y, et al. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Theranostics,2020,10(8): 3767–3778. doi: 10.7150/thno.43142
    GORRINI C, HARRIS I S, MAK T W. Modulation of oxidative stress as an anticancer strategy. Nat Revi Drug Disc,2013,12(12): 931–947. doi: 10.1038/nrd4002
    HUSSAIN T, TAN B, YIN Y, et al. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev, 2016, 2016:7432797[2029-12-03]. https://doi.org/10.1155/2016/7432797.
    DOROSHOW J H. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res,1983,43(10): 4543–4551.
    MARCHETTI M, RESNICK L, GAMLIEL E, et al. Sulindac enhances the killing of cancer cells exposed to oxidative stress. PLoS One,2009,4(6): e5804[2020-12-15].https://doi.org/10.1371/journal.pone.0005804. doi: 10.1371/journal.pone.0005804
    COLEMAN M C, ASBURY C R, DANIELS D, et al. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic Biol Med,2008,44(3): 322–331. doi: 10.1016/j.freeradbiomed.2007.08.032
    PELICANO H, CARNEY D, HUANG P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat,2004,7(2): 97–110. doi: 10.1016/j.drup.2004.01.004
    CHENG G, LANZA-JACOBY S. Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: role of NOX4. Biochem Biophys Res Commun,2015,465(1): 41–46. doi: 10.1016/j.bbrc.2015.07.118
    MOCHIZUKI T, FURUTA S, MITSUSHITA J, et al. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene,2006,25(26): 3699–3707. doi: 10.1038/sj.onc.1209406
    BRIEGER K, SCHIAVONE S, MILLER F J, JR, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly,2012,142: w13659[2020-12-15].https://doi.org/10.4414/smw.2012.13659. doi: 10.4414/smw.2012.13659
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (677) PDF downloads(30) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint