Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION)
Volume 52 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WU Qi-sheng, LIU Pei-shen, YANG Cui-ping, et al. A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 50-56. doi: 10.12182/20210160504
Citation: WU Qi-sheng, LIU Pei-shen, YANG Cui-ping, et al. A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 50-56. doi: 10.12182/20210160504

A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor

doi: 10.12182/20210160504
More Information
  • Corresponding author: E-mail: ybchen@mail.kiz.ac.cn
  • Received Date: 2020-10-28
  • Rev Recd Date: 2020-12-17
  • Publish Date: 2021-01-20
  • Historically, the Cambrian explosion was a major life evolution event caused by changes of natural environmental oxygen concentration. The use of oxygen was part of the basic survival instinct of higher life, which evolved a complex regulation system in response to variant levels of oxygen concentration. Hypoxia is one of the typical environmental characteristics in plateau areas. After long-term natural selection in hypoxic conditions, numerous species living in plateau areas have evolved unique mechanisms adapted to hypoxia. Recent studies have found that there are some similarities in adaptation to hypoxia between the animals in highland and different types of human solid tumor cells. Herein, we will summarize recent findings about the hypoxia adaptation evolution in high-altitude animals and the characteristics of hypoxic solid tumors, especially the reactive oxygen species responses in hypoxic solid tumors. We believe that deciphering the underlying molecular mechanisms involved in hypoxia adaptation in highland will facilitate the identification of new genes or biomarkers critical for research on hypoxic solid tumors in the future.
  • loading
  • [1]
    朱茂炎, 赵方臣, 殷宗军, 等. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学,2019,49(10): 1455–1490. doi: 10.1007/s11430-019-9508-4
    [2]
    FOX D. What sparked the Cambrian explosion? Nature,2016,530(7590): 268–270. doi: 10.1038/530268a
    [3]
    IVAN M, KAELIN W G, Jr. The EGLN-HIF O(2)-sensing system: multiple inputs and feedbacks. Mol Cel,2017,66(6): 772–779. doi: 10.1016/j.molcel.2017.06.002
    [4]
    SEMENZA G L, RUE E A, IYER N V, et al. Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics,1996,34(3): 437–439. doi: 10.1006/geno.1996.0311
    [5]
    WU T Y. Life on the high Tibetan plateau. High Alt Med Biol,2004,5(1): 1–2. doi: 10.1089/152702904322963609
    [6]
    QI X, CUI C, PENG Y, et al. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau. Mol Biol Evol, 2013, 30(8): 1761-1778.
    [7]
    吴天一. 高原低氧环境对人类的挑战. 医学研究杂志,2006(10): 1–3.
    [8]
    KAPPLER M, TAUBERT H , ECKERT A W. Oxygen sensing, homeostasis, and disease. N Engl J med,2011,365(6): 537–547. doi: 10.1056/NEJMc1110602
    [9]
    CAIRNS R A, HARRIS I S, MAK T W. Regulation of cancer cell metabolism. Nat Rev Cancer,2011,11(2): 85–95.
    [10]
    JING X, YANG F, SHAO C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer,2019,18(1): 157[2020-12-15].https://doi.org/10.1186/s12943-019-1089-9. doi: 10.1186/s12943-019-1089-9
    [11]
    GILKES D M, SEMENZA G L, WIRTZ D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer,2014,14(6): 430–439. doi: 10.1038/nrc3726
    [12]
    BEALL C M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Nati Acad Sci U S A,2007,104(Suppl 1): 8655–8660. doi: 10.1073/pnas.0701985104
    [13]
    CHIRAT R, MOULTON D E, GORIELY A. Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc Nati Acad Sci U S A,2013,110(15): 6015–6020. doi: 10.1073/pnas.1220443110
    [14]
    张天留, 高雪, 徐凌洋, 等. 高原家养动物环境适应性的研究进展. 畜牧兽医学报,2020,51(7): 1475–1487.
    [15]
    FENG S, MA J, LONG K, et al. Comparative microRNA Transcriptomes in domestic goats reveal acclimatization to high altitude. Front Genet, 2020, 11: 809[2020-12-15]. https://doi.org/10.3389/fgene.2020.00809.
    [16]
    THIERSCH M, SWENSON E R. High altitude and cancer mortality. High Alt Med Biol,2018,19(2): 116–123. doi: 10.1089/ham.2017.0061
    [17]
    ZHOU M, WANG H, ZHU J, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet,2016,387(10015): 251–272. doi: 10.1016/S0140-6736(15)00551-6
    [18]
    BAKER P T, LITTLE M A. Man in the Andes. Stroudsburg: Dowden, Hutchinson & Ross, 1976.
    [19]
    COSIO G. Hematic and cardiopulmonary characteristics of the Andean miner. Bol Oficina Sanit Panam,1972,72(6): 547–557.
    [20]
    BEALL C M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol,2006,46(1): 18–24. doi: 10.1093/icb/icj004
    [21]
    GARRUTO R M, CHIN C T, WEITZ C A, et al. Hematological differences during growth among Tibetans and Han Chinese born and raised at high altitude in Qinghai, China. Am J Phys Anthropol,2003,122(2): 171–183. doi: 10.1002/ajpa.10283
    [22]
    BEALL C M, SONG K, ELSTON R C, et al. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4 000 m. Proc Nati Acad Sci U S A,2004,101(39): 14300–14304. doi: 10.1073/pnas.0405949101
    [23]
    UDPA N, RONEN R, ZHOU D, et al. Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol,2014,15(2): R36[2020-12-15]. https://doi.org/10.1186/gb-2014-15-2-r36. doi: 10.1186/gb-2014-15-2-r36
    [24]
    LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol,2020,21(5): 268–283. doi: 10.1038/s41580-020-0227-y
    [25]
    XIONG Q, LIU B, DING M, et al. Hypoxia and cancer related pathology. Cancer Lett,2020,486: 1–7. doi: 10.1016/j.canlet.2020.05.002
    [26]
    CAMUZI D, DE AMORIM Í S S, RIBEIRO PINTO L F, et al. Regulation is in the air: the relationship between hypoxia and epigenetics in cancer. Cells, 2019, 8(4): 300[2020-12-15]. https://doi.org/10.3390/cells8040300.
    [27]
    RANKIN E B, GIACCIA A J. Hypoxic control of metastasis. Science,2016,352(6282): 175–180. doi: 10.1126/science.aaf4405
    [28]
    SULLIVAN L B, GUI D Y, VANDER HEIDEN M G. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer,2016,16(11): 680–693. doi: 10.1038/nrc.2016.85
    [29]
    PAVLOVA N N, THOMPSON C B. The emerging hallmarks of cancer metabolism. Cell Metab,2016,23(1): 27–47. doi: 10.1016/j.cmet.2015.12.006
    [30]
    FAUBERT B, LI K Y, CAI L, et al. Lactate metabolism in human lung tumors. Cell,2017,171(2): 358–371. doi: 10.1016/j.cell.2017.09.019
    [31]
    VAUPEL P, SCHLENGER K, KNOOP C, et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res,1991,51(12): 3316–3322.
    [32]
    VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science,2009,324(5930): 1029–1033. doi: 10.1126/science.1160809
    [33]
    BÖHME I, BOSSERHOFF A K. Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res,2016,29(5): 508–523. doi: 10.1111/pcmr.12495
    [34]
    SEMENZA G L, NEJFELT M K, CHI S M, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc NatiAcad Sci U S A,1991,88(13): 5680–5684. doi: 10.1073/pnas.88.13.5680
    [35]
    IVAN M, KONDO K, YANG H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science,2001,292(5516): 464–468. doi: 10.1126/science.1059817
    [36]
    JAAKKOLA P, MOLE D R, TIAN Y M, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science,2001,292(5516): 468–472. doi: 10.1126/science.1059796
    [37]
    THOMPSON C B. Into thin air: how we sense and respond to hypoxia. Cell,2016,167(1): 9–11. doi: 10.1016/j.cell.2016.08.036
    [38]
    GOEL H L, MERCURIO A M. VEGF targets the tumour cell. Nat Rev Cancer,2013,13(12): 871–882. doi: 10.1038/nrc3627
    [39]
    SANG N, STIEHL D P, BOHENSKY J, et al. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem,2003,278(16): 14013–14019. doi: 10.1074/jbc.M209702200
    [40]
    FORSYTHE J A, JIANG B H, IYER N V, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol,1996,16(9): 4604–4613. doi: 10.1128/mcb.16.9.4604
    [41]
    MAK P, LEAV I, PURSELL B, et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell,2010,17(4): 319–332. doi: 10.1016/j.ccr.2010.02.030
    [42]
    ZHU J, THOMPSON C B. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol,2019,20(7): 436–450. doi: 10.1038/s41580-019-0123-5
    [43]
    GODET I, SHIN Y J, JU J A, et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun,2019,10(1): 4862[2020-12-15]. https://doi.org/10.1038/s41467-019-12412-1. doi: 10.1038/s41467-019-12412-1
    [44]
    SHI Y, FAN S, WU M, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun,2019,10(1): 4892[2020-12-15]. https://doi.org/10.1038/s41467-019-12801-6. doi: 10.1038/s41467-019-12801-6
    [45]
    PRASAD S, GUPTA S C, TYAGI A K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett,2017,387: 95–105. doi: 10.1016/j.canlet.2016.03.042
    [46]
    CHANDEL N S. Mitochondrial complex Ⅲ: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol,2010,174(3): 175–181. doi: 10.1016/j.resp.2010.08.004
    [47]
    PAULSEN C E, CARROLL K S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev,2013,113(7): 4633–4679. doi: 10.1021/cr300163e
    [48]
    KOBAYASHI M, YAMAMOTO M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul,2006,46: 113–140. doi: 10.1016/j.advenzreg.2006.01.007
    [49]
    KLAUNIG J E, XU Y, ISENBERG J S, et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect,1998,106(Suppl 1): 289–295. doi: 10.1289/ehp.98106s1289
    [50]
    ZHOU L, ZHANG Z, HUANG Z, et al. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. Mol Biom,2020,1(1): 4[2020-12-15]. https://doi.org/10.1186/s43556-020-00004-1. doi: 10.1186/s43556-020-00004-1
    [51]
    ZHANG J, WANG X, VIKASH V, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev,2016,2016: 4350965[2020-12-11]. https://doi.org/10.1155/2016/4350965. doi: 10.1155/2016/4350965
    [52]
    MAULIK N, DAS D K. Redox signaling in vascular angiogenesis. Free Radic Biol Med,2002,33(8): 1047–1060. doi: 10.1016/s0891-5849(02)01005-5
    [53]
    SHIMOJO Y, AKIMOTO M, HISANAGA T, et al. Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Clin Exp Metastasis,2013,30(2): 143–154. doi: 10.1007/s10585-012-9519-8
    [54]
    LIU Y, GUO J Z, LIU Y, et al. Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth. Nat Commun,2018,9(1): 4429[2020-12-15]. https://doi.org/10.1038/s41467-018-06841-7. doi: 10.1038/s41467-018-06841-7
    [55]
    HEGDE P S, CHEN D S. Top 10 challenges in cancer immunotherapy. Immunity,2020,52(1): 17–35. doi: 10.1016/j.immuni.2019.12.011
    [56]
    PALAZON A, GOLDRATH A W, NIZET V, et al. HIF transcription factors, inflammation, and immunity. Immunity,2014,41(4): 518–528. doi: 10.1016/j.immuni.2014.09.008
    [57]
    RENNER K, SINGER K, KOEHL G E, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol,2017,8: 248[2020-12-15]. https://doi.org/10.3389/fimmu.2017.00248. doi: 10.3389/fimmu.2017.00248
    [58]
    PALAZON A, TYRAKIS P A, MACIAS D, et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell,2017,32(5): 669–683. doi: 10.1016/j.ccell.2017.10.003
    [59]
    KRZYWINSKA E, KANTARI-MIMOUN C, KERDILES Y, et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun,2017,8(1): 1597[2020-12-15].https://doi.org/10.1038/s41467-017-01599-w. doi: 10.1038/s41467-017-01599-w
    [60]
    WENES M, SHANG M, DI MATTEO M, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab,2016,24(5): 701–715. doi: 10.1016/j.cmet.2016.09.008
    [61]
    ANDO N, HARA M, SHIGA K, et al. Eicosapentaenoic acid suppresses angiogenesis via reducing secretion of IL-6 and VEGF from colon cancer-associated fibroblasts. Oncol Rep,2019,42(1): 339–349. doi: 10.3892/or.2019.7141
    [62]
    LIU N, LUO J, KUANG D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest,2019,129(2): 631–646. doi: 10.1172/JCI123027
    [63]
    CLEVER D, ROYCHOUDHURI R, CONSTANTINIDES M G, et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell,2016,166(5): 1117–1131. doi: 10.1016/j.cell.2016.07.032
    [64]
    JOHNSTON R J, SU L J, PINCKNEY J, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature,2019,574(7779): 565–570. doi: 10.1038/s41586-019-1674-5
    [65]
    XIN J, ZHANG H, HE Y, et al. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat Commun,2020,11(1): 4928[2020-12-15].https://doi.org/10.1038/s41467-020-18638-8. doi: 10.1038/s41467-020-18638-8
    [66]
    LI Y, WANG M S, OTECKO N O, et al. Hypoxia potentially promotes Tibetan longevity. Cell Res,2017,27(2): 302–305. doi: 10.1038/cr.2016.105
    [67]
    LI Y, WU D D, BOYKO A R, et al. Population variation revealed high-altitude adaptation of Tibetan mastiffs. Mol Biol Evol,2014,31(5): 1200–1205. doi: 10.1093/molbev/msu070
    [68]
    PENG Y, CUI C, HE Y, et al. Down-regulation of EPAS1 transcription and genetic adaptation of tibetans to high-altitude hypoxia. Mol Biol Evol,2017,34(4): 818–830. doi: 10.1093/molbev/msw280
    [69]
    XU X H, BAO Y, WANG X, et al. Hypoxic-stabilized EPAS1 proteins transactivate DNMT1 and cause promoter hypermethylation and transcription inhibition of EPAS1 in non-small cell lung cancer. FASEB J,2018,32(12): fj201700715[2020-12-15]. https://doi.org/10.1096/fj.201700715. doi: 10.1096/fj.201700715
    [70]
    陈丽华, 朱婕曼, 刘玉凤, 等. miR-34、MDM2、EPAS1在子宫内膜癌中的表达及与临床特征的相关性分析. 解放军医药杂志,2020,32(7): 38–42.
    [71]
    SIMONSON T S, YANG Y, HUFF C D, et al. Genetic evidence for high-altitude adaptation in Tibet. Science,2010,329(5987): 72–75. doi: 10.1126/science.1189406
    [72]
    LI Z, ZHOU W, ZHANG Y, et al. ERK Regulates HIF1α-mediated platinum resistance by directly targeting PHD2 in ovarian cancer. Clin Can Res,2019,25(19): 5947–5960. doi: 10.1158/1078-0432.CCR-18-4145
    [73]
    CAO Y, LIN S H, WANG Y, et al. Glutamic pyruvate transaminase GPT2 promotes tumorigenesis of breast cancer cells by activating sonic hedgehog signaling. Theranostics,2017,7(12): 3021–3033. doi: 10.7150/thno.18992
    [74]
    WU D D, YANG C P, WANG M S, et al. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Nat Sci Rev,2019,7(6): 952–963. doi: 10.1093/molbev/msz158
    [75]
    YU L, WANG G D, RUAN J, et al. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat Genet,2016,48(8): 947–952. doi: 10.1038/ng.3615
    [76]
    XU P, JIANG L, YANG Y, et al. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Theranostics,2020,10(8): 3767–3778. doi: 10.7150/thno.43142
    [77]
    GORRINI C, HARRIS I S, MAK T W. Modulation of oxidative stress as an anticancer strategy. Nat Revi Drug Disc,2013,12(12): 931–947. doi: 10.1038/nrd4002
    [78]
    HUSSAIN T, TAN B, YIN Y, et al. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev, 2016, 2016:7432797[2029-12-03]. https://doi.org/10.1155/2016/7432797.
    [79]
    DOROSHOW J H. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res,1983,43(10): 4543–4551.
    [80]
    MARCHETTI M, RESNICK L, GAMLIEL E, et al. Sulindac enhances the killing of cancer cells exposed to oxidative stress. PLoS One,2009,4(6): e5804[2020-12-15].https://doi.org/10.1371/journal.pone.0005804. doi: 10.1371/journal.pone.0005804
    [81]
    COLEMAN M C, ASBURY C R, DANIELS D, et al. 2-deoxy-D-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic Biol Med,2008,44(3): 322–331. doi: 10.1016/j.freeradbiomed.2007.08.032
    [82]
    PELICANO H, CARNEY D, HUANG P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat,2004,7(2): 97–110. doi: 10.1016/j.drup.2004.01.004
    [83]
    CHENG G, LANZA-JACOBY S. Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: role of NOX4. Biochem Biophys Res Commun,2015,465(1): 41–46. doi: 10.1016/j.bbrc.2015.07.118
    [84]
    MOCHIZUKI T, FURUTA S, MITSUSHITA J, et al. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene,2006,25(26): 3699–3707. doi: 10.1038/sj.onc.1209406
    [85]
    BRIEGER K, SCHIAVONE S, MILLER F J, JR, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly,2012,142: w13659[2020-12-15].https://doi.org/10.4414/smw.2012.13659. doi: 10.4414/smw.2012.13659
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (677) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return