欢迎来到《四川大学学报(医学版)》

内质网应激与肿瘤转移

周景峰 周琴 陈纯 潘景轩

周景峰, 周琴, 陈纯, 等. 内质网应激与肿瘤转移[J]. 四川大学学报(医学版), 2021, 52(1): 11-15. doi: 10.12182/20210160503
引用本文: 周景峰, 周琴, 陈纯, 等. 内质网应激与肿瘤转移[J]. 四川大学学报(医学版), 2021, 52(1): 11-15. doi: 10.12182/20210160503
ZHOU Jing-feng, ZHOU Qin, CHEN Chun, et al. A Review of the Roles of Endoplasmic Reticulum Stress in Cancer Cell Metastasis[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 11-15. doi: 10.12182/20210160503
Citation: ZHOU Jing-feng, ZHOU Qin, CHEN Chun, et al. A Review of the Roles of Endoplasmic Reticulum Stress in Cancer Cell Metastasis[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 11-15. doi: 10.12182/20210160503

栏目: 综 述

内质网应激与肿瘤转移

doi: 10.12182/20210160503
详细信息
    作者简介:

    潘景轩, 中山大学教授,国家重点研发项目首席科学家,兼任中国药理学会肿瘤药理学专业委员会和中国抗癌协会抗肿瘤药物专业委员会副主任委员,广东省药理学会肿瘤药理学专业委员会主任委员,中国病理生理学会肿瘤专业委员会常委,中国生理学会血液专业委员会委员,中国病理生理学会实验血液学会委员,中国细胞生物学学会肿瘤细胞生物学专业委员会委员,中国医师协会精准医学专业委员会委员,中国民族卫生协会临床医学分会常委。曾在美国德克萨斯大学MD Anderson Cancer Center工作8年, 2006年回国任中山医学院教授、博士生导师。主要从事肿瘤靶向治疗和肿瘤药理学研究,研究领域集中在肿瘤耐药和白血病干细胞干性的调控机制及其干预。已发表学术论文76篇,主持承担包括国家重点研发计划、国家自然科学基金重点项目等在内的多项国家级课题。曾多次担任国家自然科学基金委的学科评议组专家。目前担任Mol Cancer等国际学术期刊副主编,Theranostics等国际学术杂志编委

    通讯作者:

    E-mail:panjx2@mail.sysu.edu.cn

A Review of the Roles of Endoplasmic Reticulum Stress in Cancer Cell Metastasis

More Information
  • 摘要: 肿瘤转移是一个多步骤、低效率的生物学过程,在这个复杂过程中,肿瘤细胞发生遗传学及表观遗传学改变,使肿瘤细胞适应转移过程中所面临的不利微环境,最终在远处器官形成转移灶。内质网应激(endoplasmic reticulum stress,ER stress)引起的未折叠蛋白反应(unfolded protein response,UPR)是调节细胞适应不利微环境的最为重要的信号通路之一,在肿瘤细胞生长、存活、分化和维持蛋白质稳态等过程中发挥着至关重要的作用,参与到肿瘤转移的各个阶段。本文对内质网应激信号分子促进肿瘤细胞发生上皮间充质转化(epithelial–mesenchymal transition,EMT)、促进肿瘤的存活、促进肿瘤的免疫逃逸、促进肿瘤血管新生、促进肿瘤细胞黏附以及促进肿瘤细胞从休眠中苏醒等转移相关特性及其机制进行综述,为开发治疗肿瘤转移的新靶标提供参考。
  • 图  1  UPR信号通路参与肿瘤转移

    Figure  1.  The roles of UPR in the process of metastasis

    ROS: Reactive oxygen species; IRE1: Iositol requiring enzyme 1; XBP1s: X-box binding protein1spliced; PERK: PRKR-like endoplasmic reticulum kinase; eIF2α: Eukaryotic translation initiation factor 2 Alpha; ATF4: Activating transcription factor 4; ATF6: Activating transcription factor 6; ATF6f: ATF6 cytosolic domain.

  • [1] RAYMUNDO D P, DOULTSINOS D, GUILLORY X, et al. Pharmacological targeting of IRE1 in cancer. Trends Cancer,2020,6(12): 1018–1030. doi: 10.1016/j.trecan.2020.07.006
    [2] LIMIA C M, SAUZAY C, URRA H, et al. Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers (Basel),2019,11(5): 631. doi: 10.3390/cancers11050631
    [3] URRA H, DUFEY E, AVRIL T, et al. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer,2016,2(5): 252–262. doi: 10.1016/j.trecan.2016.03.007
    [4] CRAENE B D, BERX G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer,2013,13(2): 97–110. doi: 10.1038/nrc3447
    [5] OAKES S A. Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol,2020,190(5): 934–946. doi: 10.1016/j.ajpath.2020.01.010
    [6] VALASTYAN S, WEINBERG R A. Tumor metastasis: molecular insights and evolving paradigms. Cell,2011,147(2): 275–292. doi: 10.1016/j.cell.2011.09.024
    [7] SENFT D, RONAI Z A. Adaptive stress responses during tumor metastasis and dormancy. Trends Cancer,2016,2(8): 429–442. doi: 10.1016/j.trecan.2016.06.004
    [8] CHAFFER C L, WEINBERG R A. A perspective on cancer cell metastasis. Science,2011,331(6024): 1559–1564. doi: 10.1126/science.1203543
    [9] MASSAGUÉ J, OBENAUF A C. Metastatic colonization by circulating tumour cells. Nature,2016,529(7586): 298–306. doi: 10.1038/nature17038
    [10] HSU S K, CHIU C C, DAHMS H U, et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int J Mol Sci,2019,20(10): 2518[2020-12-25]. https://doi.org/10.3390/ijms20102518. doi: 10.3390/ijms20102518
    [11] BARTOSZEWSKA S, COLLAWN J F. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett,2020,25: 18[2020-12-25]. https://doi.org/10.1186/s11658-020-00212-1. doi: 10.1186/s11658-020-00212-1
    [12] VANACKER H, VETTERS J, MOUDOMBI L, et al. Emerging role of the unfolded protein response in tumor immunosurveillance. Trends Cancer,2017,3(7): 491–505. doi: 10.1016/j.trecan.2017.05.005
    [13] BRABLETZ T, KALLURI R, NIETO M A, et al. EMT in cancer. Nat Rev Cancer,2018,18(2): 128–134. doi: 10.1038/nrc.2017.118
    [14] SANTAMARÍA P G, MAZÓN M J, ERASO P, et al. UPR: an upstream signal to EMT induction in cancer. J Clin Med,2019,8(5): 624[2020-12-25]. https://doi.org/10.3390/jcm8050624. doi: 10.3390/jcm8050624
    [15] HAN C C, WAN F S. New insights into the role of endoplasmic reticulum stress in breast cancer metastasis. J Breast Cancer,2018,21(4): 354–362. doi: 10.4048/jbc.2018.21.e51
    [16] LI H, CHEN X, GAO Y, et al. XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cell Signal,2015,27(1): 82–89. doi: 10.1016/j.cellsig.2014.09.018
    [17] CUEVAS E P, ERASO P, MAZÓN M J, et al. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep,2017,7: 44988[2020-12-25]. https://doi.org/10.1038/srep44988. doi: 10.1038/srep44988
    [18] SHAH P P, DUPRE T V, SISKIND L J, et al. Common cytotoxic chemotherapeutics induce epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget,2017,8(14): 22625–22639.
    [19] CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell,2017,168(4): 692–706. doi: 10.1016/j.cell.2016.12.004
    [20] GRIVENNIKOV S I, KARIN M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev,2010,21(1): 11–19. doi: 10.1016/j.cytogfr.2009.11.005
    [21] BI M, NACZKI C, KORITZINSKY M, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. Embo J,2005,24(19): 3470–3481. doi: 10.1038/sj.emboj.7600777
    [22] DEY S, SAYERS C M, VERGINADIS I I, et al. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest,2015,125(7): 2592–2608. doi: 10.1172/JCI78031
    [23] NAKATOGAWA H. Autophagic degradation of the endoplasmic reticulum. Proc Jpn Acad Ser B Phys Biol Sci,2020,96(1): 1–9. doi: 10.2183/pjab.96.001
    [24] MOREL E. Endoplasmic reticulum membrane and contact site dynamics in autophagy regulation and stress response. Front Cell Dev Biol,2020,8: 343[2020-12-25]. https://doi.org/10.3389/fcell.2020.00343. doi: 10.3389/fcell.2020.00343
    [25] HØYER-HANSEN M, JÄÄTTELÄ M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ,2007,14(9): 1576–1582. doi: 10.1038/sj.cdd.4402200
    [26] BERNALES S, MCDONALD K L, WALTER P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol, 2006, 4(12): e423[2020-12-25]. https://doi.org/10.1371/journal.pbio.0040423.
    [27] B'CHIR W, MAURIN A C, CARRARO V, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res,2013,41(16): 7683–7699. doi: 10.1093/nar/gkt563
    [28] CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Molecular pathways: immunosuppressive roles of IRE1α-XBP1 signaling in dendritic cells of the tumor microenvironment. Clin Cancer Res,2016,22(9): 2121–2126. doi: 10.1158/1078-0432.CCR-15-1570
    [29] SONG M, SANDOVAL T A, CHAE C S, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature,2018,562(7727): 423–428. doi: 10.1038/s41586-018-0597-x
    [30] THEVENOT P T, SIERRA R A, RABER P L, et al. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity,2014,41(3): 389–401. doi: 10.1016/j.immuni.2014.08.015
    [31] AUF G, JABOUILLE A, GUÉRIT S, et al. Inositol-requiring enzyme 1α is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A,2010,107(35): 15553–15558. doi: 10.1073/pnas.0914072107
    [32] LIANG H, XIAO J, ZHOU Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene,2018,37(15): 1961–1975. doi: 10.1038/s41388-017-0089-8
    [33] CHEN X, ILIOPOULOS D, ZHANG Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature,2014,508(7494): 103–107. doi: 10.1038/nature13119
    [34] WANG Y, ALAM G N, NING Y, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res,2012,72(20): 5396–5406. doi: 10.1158/0008-5472.CAN-12-0474
    [35] CHO J, MIN H Y, PEI H, et al. The ATF6-EGF pathway mediates the awakening of slow-cycling chemoresistant cells and tumor recurrence by stimulating tumor angiogenesis. Cancers (Basel),2020,12(7): 1772[2020-12-25]. https://doi.org/10.3390/cancers12071772. doi: 10.3390/cancers12071772
    [36] GHOSH R, LIPSON K L, SARGENT K E, et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One, 2010, 5(3): e9575[2020-12-25]. https://doi.org/10.1371/journal.pone.0009575.
    [37] URRA H, HENRIQUEZ D R, CÁNOVAS J, et al. IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat Cell Biol,2018,20(8): 942–953. doi: 10.1038/s41556-018-0141-0
    [38] YUAN X P, DONG M, LI X, et al. GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Mol Cell Biochem,2015,398(1/2): 55–62. doi: 10.1007/s11010-014-2204-2
    [39] LU X, MU E, WEI Y, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell,2011,20(6): 701–714. doi: 10.1016/j.ccr.2011.11.002
    [40] XU L Y, ZHANG W J, ZHANG X H, et al. Endoplasmic reticulum stress in bone metastases. Front Oncol,2020,10: 1100[2020-12-25]. https://doi.org/10.3389/fonc.2020.01100. doi: 10.3389/fonc.2020.01100
    [41] ROBINSON N J, PARKER K A, SCHIEMANN W P. Epigenetic plasticity in metastatic dormancy: mechanisms and therapeutic implications. Ann Transl Med,2020,8(14): 903[2020-12-25]. htttps://doi.org/10.21037/atm.2020.02.177. doi: 10.21037/atm.2020.02.177
    [42] GIANCOTTI F G. Mechanisms governing metastatic dormancy and reactivation. Cell,2013,155(4): 750–764. doi: 10.1016/j.cell.2013.10.029
    [43] FANG C, KANG Y B. Cellular plasticity in bone metastasis. Bone,2020: 115693[2020-12-25]. https://doi.org/10.1016/j.bone.2020.115693. doi: 10.1016/j.bone.2020.115693
    [44] KORENTZELOS D, CLARK A M, WELLS A. A Perspective on therapeutic pan-resistance in metastatic cancer. Int J Mol Sci,2020,21(19): 7304[2020-12-25]. https://doi.org/10.3390/ijms21197304. doi: 10.3390/ijms21197304
    [45] COLEMAN R E, CROUCHER P I, PADHANI A R, et al. Bone metastases. Nat Rev Dis Primers, 2020, 6(1): 83[2020-12-25]. https://doi.org/10.1038/s41572-020-00216-3.
    [46] FARES J, FARES M Y, KHACHFE H H, et al. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther,2020,5(1): 28[2020-12-25]. https://doi.org/10.1038/s41392-020-0134-x. doi: 10.1038/s41392-020-0134-x
    [47] RANGANATHAN A C, OJHA S, KOURTIDIS A, et al. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res,2008,68(9): 3260–3268. doi: 10.1158/0008-5472.CAN-07-6215
  • 加载中
图(1)
计量
  • 文章访问数:  1418
  • HTML全文浏览量:  402
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2020-12-28
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回