欢迎来到《四川大学学报(医学版)》

代谢应激和胰腺癌的发生发展

李金涛 雷明珠 雷群英 尹淼

李金涛, 雷明珠, 雷群英, 等. 代谢应激和胰腺癌的发生发展[J]. 四川大学学报(医学版), 2021, 52(1): 5-10. doi: 10.12182/20210160502
引用本文: 李金涛, 雷明珠, 雷群英, 等. 代谢应激和胰腺癌的发生发展[J]. 四川大学学报(医学版), 2021, 52(1): 5-10. doi: 10.12182/20210160502
LI Jin-tao, LEI Ming-zhu, LEI Qun-ying, et al. A Review of Metabolic Stress and Development of Pancreatic Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 5-10. doi: 10.12182/20210160502
Citation: LI Jin-tao, LEI Ming-zhu, LEI Qun-ying, et al. A Review of Metabolic Stress and Development of Pancreatic Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 5-10. doi: 10.12182/20210160502

栏目: 综 述

代谢应激和胰腺癌的发生发展

doi: 10.12182/20210160502
基金项目: 国家自然科学基金(No. 82002951、No. 81872240)资助
详细信息
    作者简介:

    雷群英,复旦大学教授,博士生导师,现任复旦大学基础医学院副院长。2014年被评为中青年科技创新领军人才,国家重点基础研究发展计划(973计划)/国家自然科学基金重大项目管理办法首席科学家。2012年获教育部自然科学奖一等奖、2013年获第十届中国青年女科学家奖、2014年获教育部自然科学奖二等奖、2019年获上海市自然科学奖一等奖。担任 Signal Transduct Target TherCell StressActa Biochim Biophs Sin (Shanghai) 、《中国生物化学与分子生物学报》等学术期刊编委。在 Cancer CellCell MetabMol CellJ Clin InvestNat Commun 等发表论文50余篇。主要研究方向:肿瘤代谢,Hippo-TAZ信号通路,蛋白质翻译后修饰及其生理病理效应

    通讯作者:

    雷群英,E-mail: qlei@fudan.edu.cn

    ;尹淼,E-mail:miaoyin@fudan.edu.cn

A Review of Metabolic Stress and Development of Pancreatic Cancer

More Information
    Corresponding author: LEI Qun-ying,E-mail: qlei@fudan.edu.cn;YIN Miao,E-mail:miaoyin@fudan.edu.cn
  • 摘要: 目前胰腺导管腺癌(PDAC)的有效临床治疗方案有限,5年生存率低于8%,因此迫切需要探索新的治疗策略。PDAC为了适应极端恶劣的微环境,在其演进过程中存在广泛的代谢重编程。代谢应激与癌基因激活(如KRAS)以及抑癌基因失活所触发的信号密切相关。同时,代谢异常重塑肿瘤微环境,协同促进PDAC的发展。本篇综述将重点阐述PDAC及其微环境中的代谢重编程,以探索PDAC治疗中潜在的靶标。
  • [1] RHIM A D, MIREK E T, AIELLO N M, et al. EMT and dissemination precede pancreatic tumor formation. Cell,2012,148(1/2): 349–361. doi: 10.1016/j.cell.2011.11.025
    [2] LI J T, WANG Y P, YIN M, et al. Metabolism remodeling in pancreatic ductal adenocarcinoma. Cell Stress,2019,3(12): 361–368. doi: 10.15698/cst2019.12.205
    [3] HAN H, VON HOFF D D. SnapShot: pancreatic cancer. Cancer Cell,2013,23(3): 424e1[2020-12-25]. https://doi.org/10.1016/j.ccr.2013.03.008. doi: 10.1016/j.ccr.2013.03.008
    [4] ROOMAN I, REAL F X. Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut,2012,61(3): 449–458. doi: 10.1136/gut.2010.235804
    [5] HAENO H, GONEN M, DAVIS M B, et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell,2012,148(1/2): 362–375. doi: 10.1016/j.cell.2011.11.060
    [6] BAPAT A A, HOSTETTER G, VON HOFF D D, et al. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer,2011,11(10): 695–707. doi: 10.1038/nrc3131
    [7] WARBURG O. Origin of cancer cells. Oncologia,1956,9(2): 75–83. doi: 10.1159/000223920
    [8] BRYANT K L, MANCIAS J D, KIMMELMAN A C, et al. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci,2014,39(2): 91–100. doi: 10.1016/j.tibs.2013.12.004
    [9] GAGLIO D, METALLO C M, GAMEIRO P A, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol,2011,7: 523[2020-12-25]. https://doi.org/10.1038/msb.2011.56. doi: 10.1038/msb.2011.56
    [10] YING H, KIMMELMAN A C, LYSSIOTIS C A, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell,2012,149(3): 656–670. doi: 10.1016/j.cell.2012.01.058
    [11] MA Z, VOCADLO D J, VOSSELLER K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem,2013,288(21): 15121–15130. doi: 10.1074/jbc.M113.470047
    [12] BOTT A J, SHEN J, TONELLI C, et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep,2019,29(5): 1287–1298. doi: 10.1016/j.celrep.2019.09.056
    [13] YANG S, HWANG S, KIM M, et al. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis,2018,9(2): 55[2020-12-25]. https://doi.org/10.1038/s41419-017-0089-1. doi: 10.1038/s41419-017-0089-1
    [14] SON J, LYSSIOTIS C A, YING H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature,2013,496(7443): 101–105. doi: 10.1038/nature12040
    [15] KONG B, QIA C, ERKAN M, et al. Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels. Front Physiol,2013(4): 246[2020-12-25]. https://doi.org/10.3389/fphys.2013.00246. doi: 10.3389/fphys.2013.00246
    [16] CHIO I I C, JAFARNEJAD S M, PONZ-SARVISE M, et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell,2016,166(4): 963–976. doi: 10.1016/j.cell.2016.06.056
    [17] O'BRYAN J P. Pharmacological targeting of RAS: recent success with direct inhibitors. Pharmacol Res,2019,139: 503–511.
    [18] KIM D, XUE J Y, LITO P. Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell,2020,183(4): 850–859. doi: 10.1016/j.cell.2020.09.044
    [19] SCHOFIELD H K, ZELLER J, ESPINOZA C, et al. Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight,2018,3(2): e97422[2020-12-25]. https://doi.org/10.1172/jci.insight.97422. doi: 10.1172/jci.insight.97422
    [20] MORRIS J P T, YASHINSKIE J J, KOCHE R, et al. Alpha-ketoglutarate links p53 to cell fate during tumour suppression. Nature,2019,573(7775): 595–599. doi: 10.1038/s41586-019-1577-5
    [21] BUTERA G, PACCHIANA R, MULLAPPILLY N, et al. Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochim Biophys Acta Mol Cell Res,2018,1865(12): 1914–1923. doi: 10.1016/j.bbamcr.2018.10.005
    [22] CARRER A, TREFELY S, ZHAO S, et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov,2019,9(3): 416–435. doi: 10.1158/2159-8290.CD-18-0567
    [23] LEE J H, CHO Y R, KIM J H, et al. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp Mol Med,2019,51(11): 1–11. doi: 10.1038/s12276-019-0350-z
    [24] LI J T, YIN M, WANG D, et al. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat Cell Biol,2020,22(2): 167–174. doi: 10.1038/s41556-019-0455-6
    [25] LEI M Z, LI X X, ZHANG Y, et al. Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther,2020,5(1): 70[2020-12-25]. https://doi.org/10.1038/s41392-020-0168-0. doi: 10.1038/s41392-020-0168-0
    [26] BADGLEY M A, KREMER D M, MAURER H C, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science,2020,368(6486): 85–89. doi: 10.1126/science.aaw9872
    [27] DAHER B, PARKS S K, DURIVAULT J, et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res,2019,79(15): 3877–3890. doi: 10.1158/0008-5472.CAN-18-3855
    [28] ZAYTOUNI T, TSAI P Y, HITCHCOCK D S, et al. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun,2017,8(1): 242[2020-12-25]. https://doi.org/10.1038/s41467-017-00331-y. doi: 10.1038/s41467-017-00331-y
    [29] HUI S, GHERGUROVICH J M, MORSCHER R J, et al. Glucose feeds the TCA cycle via circulating lactate. Nature,2017,551(7678): 115–118. doi: 10.1038/nature24057
    [30] JIANG S H, LI J, DONG F Y, et al. Increased serotonin signaling contributes to the Warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology,2017,153(1): 277–911. doi: 10.1053/j.gastro.2017.03.008
    [31] BAENKE F, PECK B, MIESS H, et al. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech,2013,6(6): 1353–1363. doi: 10.1242/dmm.011338
    [32] SWIERCZYNSKI J, HEBANOWSKA A, SLEDZINSKI T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol,2014,20(9): 2279–2303. doi: 10.3748/wjg.v20.i9.2279
    [33] HATZIVASSILIOU G, ZHAO F, BAUER D E, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell,2005,8(4): 311–321. doi: 10.1016/j.ccr.2005.09.008
    [34] TADROS S, SHUKLA S K, KING R J, et al. De Novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res,2017,77(20): 5503–5517. doi: 10.1158/0008-5472.CAN-16-3062
    [35] TAKAHASHI M, HORI M, ISHIGAMORI R, et al. Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Sci,2018,109(10): 3013–3023. doi: 10.1111/cas.13766
    [36] GUILLAUMOND F, BIDAUT G, OUAISSI M, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A,2015,112(8): 2473–2478. doi: 10.1073/pnas.1421601112
    [37] SUN R C, DENKO N C. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab,2014,19(2): 285–292. doi: 10.1016/j.cmet.2013.11.022
    [38] GAO X, LIN S H, REN F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun,2016,7: 11960[2020-12-25]. https://doi.org/10.1038/ncomms11960. doi: 10.1038/ncomms11960
    [39] NEW M, VAN ACKER T, LONG J S, et al. Molecular pathways controlling autophagy in pancreatic cancer. Front Oncol,2017,7: 28[2020-12-25]. https://doi.org/10.3389/fonc.2017.00028. doi: 10.3389/fonc.2017.00028
    [40] BRYANT K L, STALNECKER C A, ZEITOUNI D, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med,2019,25(4): 628–640. doi: 10.1038/s41591-019-0368-8
    [41] ZHAO D, ZOU S W, LIU Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell,2013,23(4): 464–476. doi: 10.1016/j.ccr.2013.02.005
    [42] VIALE A, PETTAZZONI P, LYSSIOTIS C A, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature,2014,514(7524): 628–632. doi: 10.1038/nature13611
    [43] WANG Y P, ZHOU W, WANG J, et al. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell,2016,64(4): 673–687. doi: 10.1016/j.molcel.2016.09.028
    [44] HUMPTON T J, ALAGESAN B, DENICOLA G M, et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov,2019,9(9): 1268–1287. doi: 10.1158/2159-8290.CD-18-1409
    [45] OLIVARES O, MAYERS J R, GOUIRAND V, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun,2017,8: 16031.
    [46] LEE S W, ZHANG Y, JUNG M, et al. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev Cell,2019,50(3): 381–392.e5. doi: 10.1016/j.devcel.2019.05.043
    [47] SHI Y, GAO W, LYTLE N K, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature,2019,569(7754): 131–135. doi: 10.1038/s41586-019-1130-6
    [48] SOUSA C M, BIANCUR D E, WANG X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature,2016,536(7617): 479–483. doi: 10.1038/nature19084
    [49] FEIG C, GOPINATHAN A, NEESSE A, et al. The pancreas cancer microenvironment. Clin Cancer Res,2012,18(16): 4266–4276. doi: 10.1158/1078-0432.CCR-11-3114
    [50] KAMPHORST J J, NOFAL M, COMMISSO C, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res,2015,75(3): 544–553. doi: 10.1158/0008-5472.CAN-14-2211
    [51] CHRONOPOULOS A, ROBINSON B, SARPER M, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun,2016,7: 12630[2020-12-25]. https://doi.org/10.1038/ncomms12630. doi: 10.1038/ncomms12630
    [52] SHERMAN M H, YU R T, ENGLE D D, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell,2014,159(1): 80–93. doi: 10.1016/j.cell.2014.08.007
    [53] ZHU Z, ACHREJA A, MEURS N, et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat Metab,2020,2(8): 775–792. doi: 10.1038/s42255-020-0226-5
    [54] PENNY H L, SIEOW J L, ADRIANI G, et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology,2016,5(8): e1191731[2020-12-25]. https://doi.org/10.1080/2162402X.2016.1191731. doi: 10.1080/2162402X.2016.1191731
    [55] KANEDA M M, CAPPELLO P, NGUYEN A V, et al. Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression. Cancer Discov,2016,6(8): 870–885. doi: 10.1158/2159-8290.CD-15-1346
    [56] LEE K E, SPATA M, BAYNE L J, et al. HIF1α deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov,2016,6(3): 256–269. doi: 10.1158/2159-8290.CD-15-0822
    [57] BANH R S, BIANCUR D E, YAMAMOTO K, et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell,2020,183(5): 1202–1218. doi: 10.1016/j.cell.2020.10.016
    [58] DAEMEN A, PETERSON D, SAHU N, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci U S A,2015,112(32): E4410–4417. doi: 10.1073/pnas.1501605112
    [59] PENG J, SUN B F, CHEN C Y, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res,2019,29(9): 725–738. doi: 10.1038/s41422-019-0195-y
    [60] BERNARD V, SEMAAN A, HUANG J, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res,2019,25(7): 2194–2205. doi: 10.1158/1078-0432.CCR-18-1955
  • 加载中
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  440
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2020-12-22
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回