Welcome to JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION)
Volume 52 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LI Jin-tao, LEI Ming-zhu, LEI Qun-ying, et al. A Review of Metabolic Stress and Development of Pancreatic Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 5-10. doi: 10.12182/20210160502
Citation: LI Jin-tao, LEI Ming-zhu, LEI Qun-ying, et al. A Review of Metabolic Stress and Development of Pancreatic Cancer[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 5-10. doi: 10.12182/20210160502

A Review of Metabolic Stress and Development of Pancreatic Cancer

doi: 10.12182/20210160502
More Information
  • Corresponding author: LEI Qun-ying,E-mail: qlei@fudan.edu.cn; ;YIN Miao,E-mail:miaoyin@fudan.edu.cn
  • Received Date: 2020-11-04
  • Rev Recd Date: 2020-12-22
  • Publish Date: 2021-01-20
  • Pancreatic ductal adenocarcinoma (PDAC) is one of the most notorious malignancies with a 5-year survival rate of less than 8%. Therefore, it is crucial to investigate the molecular mechanism underlining PDAC initiation, promotion, and progression for efficient treatment of PDAC. In order to adapt and survive in an extremely adverse microenvironment of hypoxia and insufficiency of nutrients and energy, PDAC cells undergo extensive metabolic modification triggered by intrinsic signalings which are activated by different genetic events, including mutations occurred at KRAS, TP53, and DPC4/SMAD4, collaboratively promoting PDAC development. Notably, PDCA cells have extensive crosstalk in the form of reciprocal metabolic flux with its surrounding microenvironment to facilitate tumor advancement and therapy resistance. We herein summarize recent findings of PDAC metabolism and discuss metabolic rewiring-based therapeutic strategies.
  • loading
  • [1]
    RHIM A D, MIREK E T, AIELLO N M, et al. EMT and dissemination precede pancreatic tumor formation. Cell,2012,148(1/2): 349–361. doi: 10.1016/j.cell.2011.11.025
    [2]
    LI J T, WANG Y P, YIN M, et al. Metabolism remodeling in pancreatic ductal adenocarcinoma. Cell Stress,2019,3(12): 361–368. doi: 10.15698/cst2019.12.205
    [3]
    HAN H, VON HOFF D D. SnapShot: pancreatic cancer. Cancer Cell,2013,23(3): 424e1[2020-12-25]. https://doi.org/10.1016/j.ccr.2013.03.008. doi: 10.1016/j.ccr.2013.03.008
    [4]
    ROOMAN I, REAL F X. Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut,2012,61(3): 449–458. doi: 10.1136/gut.2010.235804
    [5]
    HAENO H, GONEN M, DAVIS M B, et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell,2012,148(1/2): 362–375. doi: 10.1016/j.cell.2011.11.060
    [6]
    BAPAT A A, HOSTETTER G, VON HOFF D D, et al. Perineural invasion and associated pain in pancreatic cancer. Nat Rev Cancer,2011,11(10): 695–707. doi: 10.1038/nrc3131
    [7]
    WARBURG O. Origin of cancer cells. Oncologia,1956,9(2): 75–83. doi: 10.1159/000223920
    [8]
    BRYANT K L, MANCIAS J D, KIMMELMAN A C, et al. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci,2014,39(2): 91–100. doi: 10.1016/j.tibs.2013.12.004
    [9]
    GAGLIO D, METALLO C M, GAMEIRO P A, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol,2011,7: 523[2020-12-25]. https://doi.org/10.1038/msb.2011.56. doi: 10.1038/msb.2011.56
    [10]
    YING H, KIMMELMAN A C, LYSSIOTIS C A, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell,2012,149(3): 656–670. doi: 10.1016/j.cell.2012.01.058
    [11]
    MA Z, VOCADLO D J, VOSSELLER K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem,2013,288(21): 15121–15130. doi: 10.1074/jbc.M113.470047
    [12]
    BOTT A J, SHEN J, TONELLI C, et al. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Rep,2019,29(5): 1287–1298. doi: 10.1016/j.celrep.2019.09.056
    [13]
    YANG S, HWANG S, KIM M, et al. Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis,2018,9(2): 55[2020-12-25]. https://doi.org/10.1038/s41419-017-0089-1. doi: 10.1038/s41419-017-0089-1
    [14]
    SON J, LYSSIOTIS C A, YING H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature,2013,496(7443): 101–105. doi: 10.1038/nature12040
    [15]
    KONG B, QIA C, ERKAN M, et al. Overview on how oncogenic Kras promotes pancreatic carcinogenesis by inducing low intracellular ROS levels. Front Physiol,2013(4): 246[2020-12-25]. https://doi.org/10.3389/fphys.2013.00246. doi: 10.3389/fphys.2013.00246
    [16]
    CHIO I I C, JAFARNEJAD S M, PONZ-SARVISE M, et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell,2016,166(4): 963–976. doi: 10.1016/j.cell.2016.06.056
    [17]
    O'BRYAN J P. Pharmacological targeting of RAS: recent success with direct inhibitors. Pharmacol Res,2019,139: 503–511.
    [18]
    KIM D, XUE J Y, LITO P. Targeting KRAS(G12C): from inhibitory mechanism to modulation of antitumor effects in patients. Cell,2020,183(4): 850–859. doi: 10.1016/j.cell.2020.09.044
    [19]
    SCHOFIELD H K, ZELLER J, ESPINOZA C, et al. Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight,2018,3(2): e97422[2020-12-25]. https://doi.org/10.1172/jci.insight.97422. doi: 10.1172/jci.insight.97422
    [20]
    MORRIS J P T, YASHINSKIE J J, KOCHE R, et al. Alpha-ketoglutarate links p53 to cell fate during tumour suppression. Nature,2019,573(7775): 595–599. doi: 10.1038/s41586-019-1577-5
    [21]
    BUTERA G, PACCHIANA R, MULLAPPILLY N, et al. Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochim Biophys Acta Mol Cell Res,2018,1865(12): 1914–1923. doi: 10.1016/j.bbamcr.2018.10.005
    [22]
    CARRER A, TREFELY S, ZHAO S, et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov,2019,9(3): 416–435. doi: 10.1158/2159-8290.CD-18-0567
    [23]
    LEE J H, CHO Y R, KIM J H, et al. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. Exp Mol Med,2019,51(11): 1–11. doi: 10.1038/s12276-019-0350-z
    [24]
    LI J T, YIN M, WANG D, et al. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat Cell Biol,2020,22(2): 167–174. doi: 10.1038/s41556-019-0455-6
    [25]
    LEI M Z, LI X X, ZHANG Y, et al. Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther,2020,5(1): 70[2020-12-25]. https://doi.org/10.1038/s41392-020-0168-0. doi: 10.1038/s41392-020-0168-0
    [26]
    BADGLEY M A, KREMER D M, MAURER H C, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science,2020,368(6486): 85–89. doi: 10.1126/science.aaw9872
    [27]
    DAHER B, PARKS S K, DURIVAULT J, et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res,2019,79(15): 3877–3890. doi: 10.1158/0008-5472.CAN-18-3855
    [28]
    ZAYTOUNI T, TSAI P Y, HITCHCOCK D S, et al. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun,2017,8(1): 242[2020-12-25]. https://doi.org/10.1038/s41467-017-00331-y. doi: 10.1038/s41467-017-00331-y
    [29]
    HUI S, GHERGUROVICH J M, MORSCHER R J, et al. Glucose feeds the TCA cycle via circulating lactate. Nature,2017,551(7678): 115–118. doi: 10.1038/nature24057
    [30]
    JIANG S H, LI J, DONG F Y, et al. Increased serotonin signaling contributes to the Warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology,2017,153(1): 277–911. doi: 10.1053/j.gastro.2017.03.008
    [31]
    BAENKE F, PECK B, MIESS H, et al. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech,2013,6(6): 1353–1363. doi: 10.1242/dmm.011338
    [32]
    SWIERCZYNSKI J, HEBANOWSKA A, SLEDZINSKI T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol,2014,20(9): 2279–2303. doi: 10.3748/wjg.v20.i9.2279
    [33]
    HATZIVASSILIOU G, ZHAO F, BAUER D E, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell,2005,8(4): 311–321. doi: 10.1016/j.ccr.2005.09.008
    [34]
    TADROS S, SHUKLA S K, KING R J, et al. De Novo lipid synthesis facilitates gemcitabine resistance through endoplasmic reticulum stress in pancreatic cancer. Cancer Res,2017,77(20): 5503–5517. doi: 10.1158/0008-5472.CAN-16-3062
    [35]
    TAKAHASHI M, HORI M, ISHIGAMORI R, et al. Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Sci,2018,109(10): 3013–3023. doi: 10.1111/cas.13766
    [36]
    GUILLAUMOND F, BIDAUT G, OUAISSI M, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A,2015,112(8): 2473–2478. doi: 10.1073/pnas.1421601112
    [37]
    SUN R C, DENKO N C. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab,2014,19(2): 285–292. doi: 10.1016/j.cmet.2013.11.022
    [38]
    GAO X, LIN S H, REN F, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun,2016,7: 11960[2020-12-25]. https://doi.org/10.1038/ncomms11960. doi: 10.1038/ncomms11960
    [39]
    NEW M, VAN ACKER T, LONG J S, et al. Molecular pathways controlling autophagy in pancreatic cancer. Front Oncol,2017,7: 28[2020-12-25]. https://doi.org/10.3389/fonc.2017.00028. doi: 10.3389/fonc.2017.00028
    [40]
    BRYANT K L, STALNECKER C A, ZEITOUNI D, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med,2019,25(4): 628–640. doi: 10.1038/s41591-019-0368-8
    [41]
    ZHAO D, ZOU S W, LIU Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell,2013,23(4): 464–476. doi: 10.1016/j.ccr.2013.02.005
    [42]
    VIALE A, PETTAZZONI P, LYSSIOTIS C A, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature,2014,514(7524): 628–632. doi: 10.1038/nature13611
    [43]
    WANG Y P, ZHOU W, WANG J, et al. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell,2016,64(4): 673–687. doi: 10.1016/j.molcel.2016.09.028
    [44]
    HUMPTON T J, ALAGESAN B, DENICOLA G M, et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov,2019,9(9): 1268–1287. doi: 10.1158/2159-8290.CD-18-1409
    [45]
    OLIVARES O, MAYERS J R, GOUIRAND V, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun,2017,8: 16031.
    [46]
    LEE S W, ZHANG Y, JUNG M, et al. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev Cell,2019,50(3): 381–392.e5. doi: 10.1016/j.devcel.2019.05.043
    [47]
    SHI Y, GAO W, LYTLE N K, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature,2019,569(7754): 131–135. doi: 10.1038/s41586-019-1130-6
    [48]
    SOUSA C M, BIANCUR D E, WANG X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature,2016,536(7617): 479–483. doi: 10.1038/nature19084
    [49]
    FEIG C, GOPINATHAN A, NEESSE A, et al. The pancreas cancer microenvironment. Clin Cancer Res,2012,18(16): 4266–4276. doi: 10.1158/1078-0432.CCR-11-3114
    [50]
    KAMPHORST J J, NOFAL M, COMMISSO C, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res,2015,75(3): 544–553. doi: 10.1158/0008-5472.CAN-14-2211
    [51]
    CHRONOPOULOS A, ROBINSON B, SARPER M, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun,2016,7: 12630[2020-12-25]. https://doi.org/10.1038/ncomms12630. doi: 10.1038/ncomms12630
    [52]
    SHERMAN M H, YU R T, ENGLE D D, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell,2014,159(1): 80–93. doi: 10.1016/j.cell.2014.08.007
    [53]
    ZHU Z, ACHREJA A, MEURS N, et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat Metab,2020,2(8): 775–792. doi: 10.1038/s42255-020-0226-5
    [54]
    PENNY H L, SIEOW J L, ADRIANI G, et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. Oncoimmunology,2016,5(8): e1191731[2020-12-25]. https://doi.org/10.1080/2162402X.2016.1191731. doi: 10.1080/2162402X.2016.1191731
    [55]
    KANEDA M M, CAPPELLO P, NGUYEN A V, et al. Macrophage PI3Kgamma drives pancreatic ductal adenocarcinoma progression. Cancer Discov,2016,6(8): 870–885. doi: 10.1158/2159-8290.CD-15-1346
    [56]
    LEE K E, SPATA M, BAYNE L J, et al. HIF1α deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov,2016,6(3): 256–269. doi: 10.1158/2159-8290.CD-15-0822
    [57]
    BANH R S, BIANCUR D E, YAMAMOTO K, et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell,2020,183(5): 1202–1218. doi: 10.1016/j.cell.2020.10.016
    [58]
    DAEMEN A, PETERSON D, SAHU N, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci U S A,2015,112(32): E4410–4417. doi: 10.1073/pnas.1501605112
    [59]
    PENG J, SUN B F, CHEN C Y, et al. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res,2019,29(9): 725–738. doi: 10.1038/s41422-019-0195-y
    [60]
    BERNARD V, SEMAAN A, HUANG J, et al. Single-cell transcriptomics of pancreatic cancer precursors demonstrates epithelial and microenvironmental heterogeneity as an early event in neoplastic progression. Clin Cancer Res,2019,25(7): 2194–2205. doi: 10.1158/1078-0432.CCR-18-1955
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1053) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return