欢迎来到《四川大学学报(医学版)》

肿瘤相关巨噬细胞的脂质代谢重编程

赵昆 时荣臣 缪洪明

赵昆, 时荣臣, 缪洪明. 肿瘤相关巨噬细胞的脂质代谢重编程[J]. 四川大学学报(医学版), 2021, 52(1): 45-49. doi: 10.12182/20210160202
引用本文: 赵昆, 时荣臣, 缪洪明. 肿瘤相关巨噬细胞的脂质代谢重编程[J]. 四川大学学报(医学版), 2021, 52(1): 45-49. doi: 10.12182/20210160202
ZHAO Kun, SHI Rong-chen, MIAO Hong-ming. A Review of the Lipid Metabolism Reprogramming in Tumor Associated Macrophages[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 45-49. doi: 10.12182/20210160202
Citation: ZHAO Kun, SHI Rong-chen, MIAO Hong-ming. A Review of the Lipid Metabolism Reprogramming in Tumor Associated Macrophages[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 45-49. doi: 10.12182/20210160202

栏目: 综 述

肿瘤相关巨噬细胞的脂质代谢重编程

doi: 10.12182/20210160202
基金项目: 国家自然科学基金(No. 81872028)资助
详细信息
    作者简介:

    缪洪明,博士、副教授,现任陆军军医大学(第三军医大学)基础医学院生物化学与分子生物学教研室副主任、生物化学与分子生物学专业以及免疫学专业博士研究生导师,兼任重庆大学生物学专业博士研究生导师。主要研究方向为代谢免疫与肿瘤微环境。入选重庆市青年拔尖人才及陆军科技英才。任重庆市免疫学会代谢免疫专委会秘书长,中国抗癌协会肿瘤代谢专委会青委会全国委员、代谢免疫学组全国委员、代谢微环境全国学组组长(筹委会)。任J Med Oncol Ther 杂志副主编, Signal Transduct Target Ther 编委。担任国家自然科学基金评审专家。先后主持国家自然科学基金、重庆市等课题10余项,发表论文40余篇。获重庆市科技进步二等奖、中国生物化学2018青年科学家论坛一等奖

    通讯作者:

    E-mail:hongmingmiao@sina.com

A Review of the Lipid Metabolism Reprogramming in Tumor Associated Macrophages

More Information
  • 摘要: 肿瘤相关巨噬细胞(tumor associated macrophages,TAMs)是实质肿瘤中最常见的间质细胞类型之一,且与肿瘤微环境的免疫抑制状态有着紧密联系,并促进肿瘤的恶性进展。TAMs内的代谢发生了重编程,并且参与调控其自身的极化以及相应的功能表型。本文详细论述了TAMs中包括三酰甘油、脂肪酸及其衍生物、胆固醇和磷脂在内的脂质代谢重编程以及它们对肿瘤进展的调控。然而,肿瘤细胞与肿瘤微环境间质细胞的代谢极具异质性。肿瘤细胞与间质细胞之间脂代谢重编程的异同点以及重编程如何调控细胞活性的机制值得深入探索。同时,综合考虑肿瘤不同的组织类型、不同的发展阶段,精准靶向干预TAMs脂质代谢重编程,促进TAMs向M1样巨噬细胞极化,将成为代谢调节肿瘤免疫治疗的新策略。
  • [1] VITALE I, MANIC G, COUSSENS L M, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab,2019,30(1): 36–50. doi: 10.1016/j.cmet.2019.06.001
    [2] MEHLA K, SINGH P K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer,2019,5(12): 822–834. doi: 10.1016/j.trecan.2019.10.007
    [3] RABOLD K, NETEA M G, ADEMA G J, et al. Cellular metabolism of tumor-associated macrophages—functional impact and consequences. FEBS Lett,2017,591(19): 3022–3041. doi: 10.1002/1873-3468.12771
    [4] DENARDO D G, RUFFELL B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol,2019,19(6): 369–382. doi: 10.1038/s41577-019-0127-6
    [5] SHANG S, JI X, ZHANG L, et al. Macrophage ABHD5 suppresses NFkappaB-dependent matrix metalloproteinase expression and cancer metastasis. Cancer Res,2019,79(21): 5513–5526.
    [6] MIAO H, OU J, PENG Y, et al. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun, 2016, 7: 11716[2020-11-03]. https://www.nature.com/articles/ncomms11716. doi: 10.1038/ncomms11716.
    [7] XIANG W, SHI R, KANG X, et al. Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun,2018,9(1): 2574–2586. doi: 10.1038/s41467-018-04999-8
    [8] OU J, MIAO H, MA Y, et al. Loss of ABHD5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep,2014,9(5): 1798–1811. doi: 10.1016/j.celrep.2014.11.016
    [9] SU P, WANG Q, BI E, et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res,2020,80(7): 1438–1450. doi: 10.1158/0008-5472.CAN-19-2994
    [10] VATS D, MUKUNDAN L, ODEGAARD J I, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab,2006,4(1): 13–24. doi: 10.1016/j.cmet.2006.05.011
    [11] MARÉCHAL L, LAVIOLETTE M, RODRIGUE-WAY A, et al. The CD36-PPARγ pathway in metabolic disorders. Int J Mol Sci,2018,19(5): 1529–1544. doi: 10.3390/ijms19051529
    [12] WU L, ZHANG X, ZHENG L, et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res,2020,8(5): 710–721. doi: 10.1158/2326-6066.CIR-19-0261
    [13] DENG X, ZHANG P, LIANG T, et al. Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARgamma and NF-kappaB pathways. Int J Mol Med,2015,36(2): 449–454. doi: 10.3892/ijmm.2015.2230
    [14] ZHANG Q, WANG H, MAO C, et al. Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol, 2018, 94: 27-35[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/29248877/. doi: 10.1016/j.molimm.2017.12.011.
    [15] ZELENAY S, VAN DER VEEN A G, BÖTTCHER J P, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell,2015,162(6): 1257–1270. doi: 10.1016/j.cell.2015.08.015
    [16] CEN B, LANG J D, DU Y, et al. Prostaglandin E2 induces miR675-5p to promote colorectal tumor metastasis via modulation of p53 expression. Gastroenterology, 2020, 158(4): 971-984.e10[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/31734182/. doi: 10.1053/j.gastro.2019.11.013.
    [17] WANG D, DUBOIS R N. Role of prostanoids in gastrointestinal cancer. J Clin Invest,2018,128(7): 2732–2742. doi: 10.1172/JCI97953
    [18] FENG M, JIANG W, KIM B Y S, et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer,2019,19(10): 568–586. doi: 10.1038/s41568-019-0183-z
    [19] PRIMA V, KALIBEROVA L N, KALIBEROV S, et al. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A,2017,114(5): 1117–1122. doi: 10.1073/pnas.1612920114
    [20] BIANCHINI F, MASSI D, MARCONI C, et al. Expression of cyclo-oxygenase-2 in macrophages associated with cutaneous melanoma at different stages of progression. Prostaglandins Other Lipid Mediat,2007,83(4): 320–328. doi: 10.1016/j.prostaglandins.2007.03.003
    [21] RINGLEB J, STRACK E, ANGIONI C, et al. Apoptotic cancer cells suppress 5-lipoxygenase in tumor-associated macrophages. J Immunol,2018,200(2): 857–868. doi: 10.4049/jimmunol.1700609
    [22] DAURKIN I, ERUSLANOV E, STOFFS T, et al. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res,2011,71(20): 6400–6409. doi: 10.1158/0008-5472.CAN-11-1261
    [23] MCKILLOP I H, GIRARDI C A, THOMPSON K J. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal, 2019, 62: 109336[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/31170472/. doi: 10.1016/j.cellsig.2019.06.001.
    [24] ELSHERBINY M E, EMARA M, GODBOUT R. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res,2013,52(4): 562–570. doi: 10.1016/j.plipres.2013.08.004
    [25] ZHANG Y, SUN Y, RAO E, et al. Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-β responses in tumor-associated macrophages. Cancer Res,2014,74(11): 2986–2998. doi: 10.1158/0008-5472.CAN-13-2689
    [26] RAO E, SINGH P, ZHAI X, et al. Inhibition of tumor growth by a newly-identified activator for epidermal fatty acid binding protein. Oncotarget,2015,6(10): 7815–7827. doi: 10.18632/oncotarget.3485
    [27] HAO J, YAN F, ZHANG Y, et al. Expression of adipocyte/macrophage fatty acid-binding protein in tumor-associated macrophages promotes breast cancer progression. Cancer Res,2018,78(9): 2343–2355. doi: 10.1158/0008-5472.CAN-17-2465
    [28] VAN DER VORST E P C, THEODOROU K, WU Y, et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-kappaB/STAT1-IRF1 signaling. Cell Metab,2017,25(1): 197–207. doi: 10.1016/j.cmet.2016.10.013
    [29] GOOSSENS P, RODRIGUEZ-VITA J, ETZERODT A, et al. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab, 2019, 29(6): 1376−1389.e4[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/30930171/. doi: 10.1016/j.cmet.2019.02.016.
    [30] WANG N, LAN D, CHEN W, et al. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A,2004,101(26): 9774–9779. doi: 10.1073/pnas.0403506101
    [31] SAG D, CEKIC C, WU R, et al. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun, 2015, 6: 6354[2020-11-03]. https://www.nature.com/articles/ncomms7354. doi: 10.1038/ncomms7354.
    [32] SHI S Z, LEE E J, LIN Y J, et al. Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am J Cancer Res,2019,9(10): 2194–2208.
    [33] PARK S J, LEE K P, KANG S, et al. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell Signal,2014,26(10): 2249–2258. doi: 10.1016/j.cellsig.2014.07.009
    [34] MACIEL E, NEVES B M, MARTINS J, et al. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal, 2019, 61: 30-38.
    [35] REINARTZ S, LIEBER S, PESEK J, et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Mol Oncol,2019,13(2): 185–201. doi: 10.1002/1878-0261.12396
    [36] BIAN D, SU S, MAHANIVONG C, et al. Lysophosphatidic acid stimulates ovarian cancer cell migration via a Ras-MEK kinase 1 pathway. Cancer Res,2004,64(12): 4209–4217. doi: 10.1158/0008-5472.CAN-04-0060
    [37] HOUBEN A J, MOOLENAAR W H. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev,2011,30(3/4): 557–565. doi: 10.1007/s10555-011-9319-7
    [38] ZHANG D, SHI R, XIANG W, et al. The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages. Signal Transduct Target Ther,2020,5(1): 24–36. doi: 10.1038/s41392-020-0117-y
    [39] RABOLD K, ASCHENBRENNER A, THIELE C, et al. Enhanced lipid biosynthesis in human tumor-induced macrophages contributes to their protumoral characteristics. J Immunother Cancer, 2020, 8(2): e000638[2020-11-03]. https://pubmed.ncbi.nlm.nih.gov/32943450/. doi: 10.1136/jitc-2020-000638.
    [40] EMANUELE S, D'ANNEO A, CALVARUSO G, et al. The double-edged sword profile of redox signaling: oxidative events as molecular switches in the balance between cell physiology and cancer. Chem Res Toxicol,2018,31(4): 201–210. doi: 10.1021/acs.chemrestox.7b00311
  • 加载中
计量
  • 文章访问数:  1649
  • HTML全文浏览量:  450
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2020-12-10
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回