欢迎来到《四川大学学报(医学版)》

应激反应与糖尿病关系的研究进展

袁克非 石佳艳 彭李缘 李昌龙 张媛媛

袁克非, 石佳艳, 彭李缘, 等. 应激反应与糖尿病关系的研究进展[J]. 四川大学学报(医学版), 2021, 52(1): 64-69. doi: 10.12182/20210160103
引用本文: 袁克非, 石佳艳, 彭李缘, 等. 应激反应与糖尿病关系的研究进展[J]. 四川大学学报(医学版), 2021, 52(1): 64-69. doi: 10.12182/20210160103
YUAN Ke-fei, SHI Jia-yan, PENG Li-yuan, et al. A Review of Progress of the Relation Between Stress Response and Diabetes Mellitus[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 64-69. doi: 10.12182/20210160103
Citation: YUAN Ke-fei, SHI Jia-yan, PENG Li-yuan, et al. A Review of Progress of the Relation Between Stress Response and Diabetes Mellitus[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 64-69. doi: 10.12182/20210160103

栏目: 综 述

应激反应与糖尿病关系的研究进展

doi: 10.12182/20210160103
基金项目: 国家自然科学基金(No. 81790251、No. 81770580、No. 81872004)、国家重点研发计划(No. 2020YFA0509400)、广东省基础与应用基础研究重大项目(No. 2019B030302012)、四川省科技项目(No. 2019YFQ0001)和放射肿瘤学四川省重点实验室开放基金项目(No. 2020FSZLX-02)资助
详细信息
    作者简介:

      张媛媛,副教授,四川大学华西基础与法医学院硕士研究生导师。中国药理学会化疗药理专业委员会青委会副主任委员,中国药理学会网络药理学专业委员会委员,中国医疗保健国际交流促进会循证医学分会委员,中国抗癌协会肿瘤标志专业委员会委员,中国抗癌协会肿瘤胃肠病学专业委员会委员,四川省药理学学会理事。研究方向:代谢性疾病机制研究及药物研发;基于氧化还原调控的皮肤损伤修复机制及药物研发

    通讯作者:

    E-mail:zhangyy@scu.edu.cn

A Review of Progress of the Relation Between Stress Response and Diabetes Mellitus

More Information
  • 摘要: 应激反应是机体应对环境变化的一种适应模式。适度应激反应可诱导机体建立有效的适应策略以提高生存能力,而过度的应激反应会引起机体应激损伤,导致多种生理或心理相关疾病的发生发展,其中也包括糖尿病。糖尿病是一种典型的应激相关疾病,已有大量证据表明糖尿病的发生发展过程与代谢应激、氧化应激和内质网应激密切相关,然而各种应激反应调控糖尿病的具体分子机制及如何通过调变应激反应来预防和治疗糖尿病仍有待进一步研究。本文对应激反应的概念、调控机制及各种应激反应在糖尿病发病过程中的功能和作用机制进行概述,重点关注近年来应激医学在糖尿病研究领域的前沿发展,以期为糖尿病的预防与治疗提供理论依据和参考。未来的研究应重点阐明介导应激反应调控糖尿病发病过程的关键因子作为药物靶标的临床应用价值,并加速推进相关的转化医学研究。
  • [1] RUSSELL G, LIGHTMAN S. The human stress response. Nat Rev Endocrinol,2019,15(9): 525–534. doi: 10.1038/s41574-019-0228-0
    [2] FAN W. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol,2017,6(1): 8–16. doi: 10.1097/XCE.0000000000000116
    [3] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care,2014,37(Suppl 1): S81–S90.
    [4] SZABLEWSKI L. Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol,2017,230: 70–75. doi: 10.1016/j.ijcard.2016.12.083
    [5] ZHANG Y, SOWERS J R, REN J. Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol,2018,14(6): 356–376. doi: 10.1038/s41574-018-0009-1
    [6] WELLEN K E, THOMPSON C B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell,2010,40(2): 323–332. doi: 10.1016/j.molcel.2010.10.004
    [7] WANG Y, HU H, YIN J, et al. TLR4 participates in sympathetic hyperactivity post-MI in the PVN by regulating NF-κB pathway and ROS production. Redox Biol, 2019, 24: 101186[2020-12-28]. https://doi.org/10.1016/j.redox.2019.101186.
    [8] LIN L, CAO L, LIU Y, et al. B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3. Leukemia,2019,33(6): 1475–1486. doi: 10.1038/s41375-018-0331-6
    [9] ZHANG Y, QU Y, LIN Y, et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun, 2017, 8(1): 464[2020-12-28]. https://www.nature.com/articles/s41467-017-00489-5. doi: 10.1038/s41467-017-00489-5.
    [10] WANG T, CAO Y, ZHENG Q, et al. SENP1-SIRT3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell,2019,75(4): 823–834. doi: 10.1016/j.molcel.2019.06.008
    [11] CHIO I I C, TUVESON D A. ROS in cancer: the burning question. Trends Mol Med,2017,23(5): 411–429. doi: 10.1016/j.molmed.2017.03.004
    [12] HAYES J D, DINKOVA-KOSTOVA A T, TEW K D. Oxidative stress in cancer. Cancer Cell,2020,38(2): 167–197. doi: 10.1016/j.ccell.2020.06.001
    [13] SCHMIDLIN C J, DODSON M B, MADHAVAN L, et al. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med,2019,134: 702–707. doi: 10.1016/j.freeradbiomed.2019.01.016
    [14] KLOTZ L O, STEINBRENNER H. Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol,2017,13: 646–654. doi: 10.1016/j.redox.2017.07.015
    [15] SONG M, CUBILLOS-RUIZ J R. Endoplasmic reticulum stress responses in intratumoral immune cells: implications for cancer immunotherapy. Trends Immunol,2019,40(2): 128–141. doi: 10.1016/j.it.2018.12.001
    [16] FRAKES A E, DILLIN A. The UPRER: sensor and coordinator of organismal homeostasis. Mol Cell,2017,66(6): 761–771. doi: 10.1016/j.molcel.2017.05.031
    [17] CAKIR I, NILLNI E A. Endoplasmic reticulum stress, the hypothalamus, and energy balance. Trends Endocrinol Metab,2019,30(3): 163–176. doi: 10.1016/j.tem.2019.01.002
    [18] WANG M, KAUFMAN R J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature,2016,529(7586): 326–335. doi: 10.1038/nature17041
    [19] RUEGSEGGER G N, CREO A L, CORTES T M, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest,2018,128(9): 3671–3681. doi: 10.1172/JCI120843
    [20] HOTAMISLIGIL G S. Inflammation, metaflammation and immunometabolic disorders. Nature,2017,542(7640): 177–185. doi: 10.1038/nature21363
    [21] CHOUCHANI E T, KAZAK L, JEDRYCHOWSKI M P, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature,2016,532(7597): 112–116. doi: 10.1038/nature17399
    [22] FAKHRUDDIN S, ALANAZI W, JACKSON K E. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res, 2017, 2017: 8379327[2020-12-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253173/. doi: 10.1155/2017/8379327.
    [23] NOLAN C J, RUDERMAN N B, KAHN S E, et al. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes,2015,64(3): 673–686. doi: 10.2337/db14-0694
    [24] USSHER J R, CAMPBELL J E, MULVIHILL E E, et al. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab,2018,27(2): 450–460. doi: 10.1016/j.cmet.2017.11.003
    [25] JAIS A, SOLAS M, BACKES H, et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell,2016,165(4): 882–895. doi: 10.1016/j.cell.2016.03.033
    [26] KENNY H C, ABEL E D. Heart failure in type 2 diabetes mellitus. Circ Res,2019,124(1): 121–141. doi: 10.1161/CIRCRESAHA.118.311371
    [27] LEVASSEUR E M, YAMADA K, PIÑEROS A R, et al. Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Sci Signal, 2019, 12(610): eaax0715[2020-12-28]. https://stke.sciencemag.org/content/12/610/eaax0715.long. doi: 10.1126/scisignal.aax0715.
    [28] WEIR G C. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes,2020,69(3): 273–278. doi: 10.2337/db19-0138
    [29] GERBER P A, RUTTER G A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal,2017,26(10): 501–518. doi: 10.1089/ars.2016.6755
    [30] LEE Y S, WOLLAM J, OLEFSKY J M. An integrated view of immunometabolism. Cell,2018,172(1/2): 22–40. doi: 10.1016/j.cell.2017.12.025
    [31] KLEINER S, GOMEZ D, MEGRA B, et al. Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci U S A,2018,115(32): E7642–E7649. doi: 10.1073/pnas.1721418115
    [32] POCIOT F, LERNMARK Å. Genetic risk factors for type 1 diabetes. Lancet,2016,387(10035): 2331–2339. doi: 10.1016/S0140-6736(16)30582-7
    [33] CATRYSSE L, VAN LOO G. Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol,2017,27(6): 417–429. doi: 10.1016/j.tcb.2017.01.006
    [34] KITADA M, OGURA Y, MONNO I, et al. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Front Endocrinol, 2019, 10: 187[2020-12-28]. https://doi.org/10.3389/fendo.2019.00187.
    [35] STUART C A, HOWELL M E, CARTWRIGHT B M, et al. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation. Physiol Rev, 2014, 2(12): e12236[2020-12-28]. https://doi.org/10.14814/phy2.12236.
    [36] PETERSEN M C, SHULMAN G I. Mechanisms of insulin action and insulin resistance. Physiol Rev,2018,98(4): 2133–2223. doi: 10.1152/physrev.00063.2017
    [37] YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol,2019,16(10): 589–604. doi: 10.1038/s41575-019-0186-y
    [38] KAHN C R, WANG G, LEE K Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest,2019,129(10): 3990–4000. doi: 10.1172/JCI129187
    [39] REILLY S M, SALTIEL A R. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol,2017,13(11): 633–643. doi: 10.1038/nrendo.2017.90
    [40] ZHANG Y, KIM M S, JIA B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature,2017,548(7665): 52–57. doi: 10.1038/nature23282
    [41] SONG M, SANDOVAL T A, CHAE C S, et al. IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature,2018,562(7727): 423–428. doi: 10.1038/s41586-018-0597-x
    [42] OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol,2019,20(3): 137–155. doi: 10.1038/s41580-018-0085-z
    [43] CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell,2017,168(4): 692–706. doi: 10.1016/j.cell.2016.12.004
    [44] HETZ C, PAPA F R. The unfolded protein response and cell fate control. Mol Cell,2018,69(2): 169–181. doi: 10.1016/j.molcel.2017.06.017
    [45] LEBEAUPIN C, VALLÉE D, HAZARI Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol,2018,69(4): 927–947. doi: 10.1016/j.jhep.2018.06.008
    [46] CHEN S, HENDERSON A, PETRIELLO M C, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab, 2019, 30(6): 1141-1151. e5[2020-12-28]. https://doi.org/10.1016/j.cmet.2019.08.021.
    [47] MEEX R C R, WATT M J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol,2017,13(9): 509–520. doi: 10.1038/nrendo.2017.56
    [48] LI W, ZHU J, DOU J, et al. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun,2017,8(1): 1–14. doi: 10.1038/s41467-016-0009-6
    [49] FUMAGALLI F, NOACK J, BERGMANN T J, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol,2016,18(11): 1173–1184. doi: 10.1038/ncb3423
  • 加载中
计量
  • 文章访问数:  753
  • HTML全文浏览量:  217
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2020-12-30
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回