[1] |
RUSSELL G, LIGHTMAN S. The human stress response. Nat Rev Endocrinol,2019,15(9): 525–534. doi: 10.1038/s41574-019-0228-0
|
[2] |
FAN W. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol,2017,6(1): 8–16. doi: 10.1097/XCE.0000000000000116
|
[3] |
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care,2014,37(Suppl 1): S81–S90.
|
[4] |
SZABLEWSKI L. Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol,2017,230: 70–75. doi: 10.1016/j.ijcard.2016.12.083
|
[5] |
ZHANG Y, SOWERS J R, REN J. Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol,2018,14(6): 356–376. doi: 10.1038/s41574-018-0009-1
|
[6] |
WELLEN K E, THOMPSON C B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell,2010,40(2): 323–332. doi: 10.1016/j.molcel.2010.10.004
|
[7] |
WANG Y, HU H, YIN J, et al. TLR4 participates in sympathetic hyperactivity post-MI in the PVN by regulating NF-κB pathway and ROS production. Redox Biol, 2019, 24: 101186[2020-12-28]. https://doi.org/10.1016/j.redox.2019.101186.
|
[8] |
LIN L, CAO L, LIU Y, et al. B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3. Leukemia,2019,33(6): 1475–1486. doi: 10.1038/s41375-018-0331-6
|
[9] |
ZHANG Y, QU Y, LIN Y, et al. Enoyl-CoA hydratase-1 regulates mTOR signaling and apoptosis by sensing nutrients. Nat Commun, 2017, 8(1): 464[2020-12-28]. https://www.nature.com/articles/s41467-017-00489-5. doi: 10.1038/s41467-017-00489-5.
|
[10] |
WANG T, CAO Y, ZHENG Q, et al. SENP1-SIRT3 signaling controls mitochondrial protein acetylation and metabolism. Mol Cell,2019,75(4): 823–834. doi: 10.1016/j.molcel.2019.06.008
|
[11] |
CHIO I I C, TUVESON D A. ROS in cancer: the burning question. Trends Mol Med,2017,23(5): 411–429. doi: 10.1016/j.molmed.2017.03.004
|
[12] |
HAYES J D, DINKOVA-KOSTOVA A T, TEW K D. Oxidative stress in cancer. Cancer Cell,2020,38(2): 167–197. doi: 10.1016/j.ccell.2020.06.001
|
[13] |
SCHMIDLIN C J, DODSON M B, MADHAVAN L, et al. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med,2019,134: 702–707. doi: 10.1016/j.freeradbiomed.2019.01.016
|
[14] |
KLOTZ L O, STEINBRENNER H. Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol,2017,13: 646–654. doi: 10.1016/j.redox.2017.07.015
|
[15] |
SONG M, CUBILLOS-RUIZ J R. Endoplasmic reticulum stress responses in intratumoral immune cells: implications for cancer immunotherapy. Trends Immunol,2019,40(2): 128–141. doi: 10.1016/j.it.2018.12.001
|
[16] |
FRAKES A E, DILLIN A. The UPRER: sensor and coordinator of organismal homeostasis. Mol Cell,2017,66(6): 761–771. doi: 10.1016/j.molcel.2017.05.031
|
[17] |
CAKIR I, NILLNI E A. Endoplasmic reticulum stress, the hypothalamus, and energy balance. Trends Endocrinol Metab,2019,30(3): 163–176. doi: 10.1016/j.tem.2019.01.002
|
[18] |
WANG M, KAUFMAN R J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature,2016,529(7586): 326–335. doi: 10.1038/nature17041
|
[19] |
RUEGSEGGER G N, CREO A L, CORTES T M, et al. Altered mitochondrial function in insulin-deficient and insulin-resistant states. J Clin Invest,2018,128(9): 3671–3681. doi: 10.1172/JCI120843
|
[20] |
HOTAMISLIGIL G S. Inflammation, metaflammation and immunometabolic disorders. Nature,2017,542(7640): 177–185. doi: 10.1038/nature21363
|
[21] |
CHOUCHANI E T, KAZAK L, JEDRYCHOWSKI M P, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature,2016,532(7597): 112–116. doi: 10.1038/nature17399
|
[22] |
FAKHRUDDIN S, ALANAZI W, JACKSON K E. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res, 2017, 2017: 8379327[2020-12-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253173/. doi: 10.1155/2017/8379327.
|
[23] |
NOLAN C J, RUDERMAN N B, KAHN S E, et al. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes,2015,64(3): 673–686. doi: 10.2337/db14-0694
|
[24] |
USSHER J R, CAMPBELL J E, MULVIHILL E E, et al. Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction. Cell Metab,2018,27(2): 450–460. doi: 10.1016/j.cmet.2017.11.003
|
[25] |
JAIS A, SOLAS M, BACKES H, et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell,2016,165(4): 882–895. doi: 10.1016/j.cell.2016.03.033
|
[26] |
KENNY H C, ABEL E D. Heart failure in type 2 diabetes mellitus. Circ Res,2019,124(1): 121–141. doi: 10.1161/CIRCRESAHA.118.311371
|
[27] |
LEVASSEUR E M, YAMADA K, PIÑEROS A R, et al. Hypusine biosynthesis in β cells links polyamine metabolism to facultative cellular proliferation to maintain glucose homeostasis. Sci Signal, 2019, 12(610): eaax0715[2020-12-28]. https://stke.sciencemag.org/content/12/610/eaax0715.long. doi: 10.1126/scisignal.aax0715.
|
[28] |
WEIR G C. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes,2020,69(3): 273–278. doi: 10.2337/db19-0138
|
[29] |
GERBER P A, RUTTER G A. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal,2017,26(10): 501–518. doi: 10.1089/ars.2016.6755
|
[30] |
LEE Y S, WOLLAM J, OLEFSKY J M. An integrated view of immunometabolism. Cell,2018,172(1/2): 22–40. doi: 10.1016/j.cell.2017.12.025
|
[31] |
KLEINER S, GOMEZ D, MEGRA B, et al. Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci U S A,2018,115(32): E7642–E7649. doi: 10.1073/pnas.1721418115
|
[32] |
POCIOT F, LERNMARK Å. Genetic risk factors for type 1 diabetes. Lancet,2016,387(10035): 2331–2339. doi: 10.1016/S0140-6736(16)30582-7
|
[33] |
CATRYSSE L, VAN LOO G. Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends Cell Biol,2017,27(6): 417–429. doi: 10.1016/j.tcb.2017.01.006
|
[34] |
KITADA M, OGURA Y, MONNO I, et al. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Front Endocrinol, 2019, 10: 187[2020-12-28]. https://doi.org/10.3389/fendo.2019.00187.
|
[35] |
STUART C A, HOWELL M E, CARTWRIGHT B M, et al. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation. Physiol Rev, 2014, 2(12): e12236[2020-12-28]. https://doi.org/10.14814/phy2.12236.
|
[36] |
PETERSEN M C, SHULMAN G I. Mechanisms of insulin action and insulin resistance. Physiol Rev,2018,98(4): 2133–2223. doi: 10.1152/physrev.00063.2017
|
[37] |
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol,2019,16(10): 589–604. doi: 10.1038/s41575-019-0186-y
|
[38] |
KAHN C R, WANG G, LEE K Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest,2019,129(10): 3990–4000. doi: 10.1172/JCI129187
|
[39] |
REILLY S M, SALTIEL A R. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol,2017,13(11): 633–643. doi: 10.1038/nrendo.2017.90
|
[40] |
ZHANG Y, KIM M S, JIA B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature,2017,548(7665): 52–57. doi: 10.1038/nature23282
|
[41] |
SONG M, SANDOVAL T A, CHAE C S, et al. IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature,2018,562(7727): 423–428. doi: 10.1038/s41586-018-0597-x
|
[42] |
OLZMANN J A, CARVALHO P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol,2019,20(3): 137–155. doi: 10.1038/s41580-018-0085-z
|
[43] |
CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell,2017,168(4): 692–706. doi: 10.1016/j.cell.2016.12.004
|
[44] |
HETZ C, PAPA F R. The unfolded protein response and cell fate control. Mol Cell,2018,69(2): 169–181. doi: 10.1016/j.molcel.2017.06.017
|
[45] |
LEBEAUPIN C, VALLÉE D, HAZARI Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol,2018,69(4): 927–947. doi: 10.1016/j.jhep.2018.06.008
|
[46] |
CHEN S, HENDERSON A, PETRIELLO M C, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab, 2019, 30(6): 1141-1151. e5[2020-12-28]. https://doi.org/10.1016/j.cmet.2019.08.021.
|
[47] |
MEEX R C R, WATT M J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol,2017,13(9): 509–520. doi: 10.1038/nrendo.2017.56
|
[48] |
LI W, ZHU J, DOU J, et al. Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun,2017,8(1): 1–14. doi: 10.1038/s41467-016-0009-6
|
[49] |
FUMAGALLI F, NOACK J, BERGMANN T J, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol,2016,18(11): 1173–1184. doi: 10.1038/ncb3423
|