欢迎来到《四川大学学报(医学版)》

嘌呤信号与心理应激研究进展

任文静 唐勇

任文静, 唐勇. 嘌呤信号与心理应激研究进展[J]. 四川大学学报(医学版), 2021, 52(1): 33-38. doi: 10.12182/20210160102
引用本文: 任文静, 唐勇. 嘌呤信号与心理应激研究进展[J]. 四川大学学报(医学版), 2021, 52(1): 33-38. doi: 10.12182/20210160102
REN Wen-Jing, TANG Yong. A Review of the State of Purinergic Signaling and Psychological Stress[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 33-38. doi: 10.12182/20210160102
Citation: REN Wen-Jing, TANG Yong. A Review of the State of Purinergic Signaling and Psychological Stress[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 33-38. doi: 10.12182/20210160102

栏目: 综 述

嘌呤信号与心理应激研究进展

doi: 10.12182/20210160102
基金项目: 国家重点研发计划(No.2019YFC1709101)资助
详细信息
    作者简介:

    唐勇,研究员,四川省青年科技创新研究团队带头人、四川省学术技术带头人,现任成都中医药大学针灸推拿学院副院长、针灸与时间生物学四川省重点实验室主任、中国嘌呤信号俱乐部共同主席、中国针灸学会皮内针专委会秘书长、中国神经科学学会神经内稳态和内分泌专委会副主任委员、中国生理学会人体微生态专委会副主任委员。担任Purinergic SignalFrontiers in Neuroscience副主编,Neurosci BullFrontiers in OncologyNeuropharmacologyWorld J Acupunct Moxibustion、《世界华人消化杂志》《上海针灸杂志》《世界中医药杂志》编委。作为课题负责人主持国家重点研发项目课题、国家重点基础研究发展计划(973计划)课题、国家自然科学基金委重大研究计划课题、中德科学中心国际合作项目等国家级课题,推动嘌呤信号研究领域的国际发展

    通讯作者:

    E-mail:tangyong@cdutcm.edu.cn

A Review of the State of Purinergic Signaling and Psychological Stress

More Information
  • 摘要: 嘌呤信号广泛参与机体的生理病理过程,而心理应激作为机体应对应激源时表现出的一种体内不协调的状态,与嘌呤信号关系密切。应激导致的ATP异常释放,进一步导致与ATP相关受体水平异常,从而出现心理应激相关疾病,如焦虑、抑郁、创伤后应激障碍、精神分裂症等。现针对嘌呤信号参与心理应激的研究多集中于ATP、腺苷以及P2X2、P2X3、P2X4、P2X7、A1、A2A受体,但其具体机制还有待进一步研究;并且目前针对ATP实时监测技术应用于应激模型动物的研究尚少,ATP在应激发生过程中的具体生物学作用还未可知。因此本文重点就心理应激与嘌呤信号之间的关系进行综述,探讨心理应激状态下,嘌呤信号的表达变化,以及嘌呤信号的表达是否会反过来介导应激反应,提出现有ATP实时监测技术以及嘌呤能化合物用于心理应激领域研究的假设,为今后从嘌呤信号途径解析心理应激的形成机制或治疗靶点提供新的思路。
  • [1] BURNSTOCK G. Purinergic nerves. Pharmacol Rev,1972,24(3): 509–581.
    [2] BURNSTOCK G. Introduction to purinergic signaling. Methods Mol Biol,2020,2041: 1–15. doi: 10.1007/978-1-4939-9717-6_1
    [3] BURNSTOCK G. Purinergic receptors. J Theor Biol,1976,62(2): 491–503. doi: 10.1016/0022-5193(76)90133-8
    [4] LONDOS C, COOPER D M, WOLFF J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A,1980,77(5): 2551–2554. doi: 10.1073/pnas.77.5.2551
    [5] VAN CALKER D, MÜLLER M, HAMPRECHT B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem,1979,33(5): 999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x
    [6] BURNSTOCK G, KENNEDY C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol,1985,16(5): 433–440. doi: 10.1016/0306-3623(85)90001-1
    [7] FREDHOLM B B, AP I J, JACOBSON K A, et al. International union of pharmacology. ⅩⅩⅤ. Nomenclature and classification of adenosine receptors. Pharmacol Rev,2001,53(4): 527–552.
    [8] LUSTIG K D, SHIAU A K, BRAKE A J, et al. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A,1993,90(11): 5113–5117. doi: 10.1073/pnas.90.11.5113
    [9] BRAKE A J, WAGENBACH M J, JULIUS D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature,1994,371(6497): 519–523. doi: 10.1038/371519a0
    [10] ZHAO W, ZHANG Y, JI R, et al. Expression of P2X receptors in the rat anterior pituitary. Purinerg Signal,2020,16(1): 17–28. doi: 10.1007/s11302-019-09685-y
    [11] BURNSTOCK G. Purine and purinergic receptors. Brain Neurosci Adv, 2018, 2: 2398212818817494[2020-12-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058212/. doi: 10.1177/2398212818817494.
    [12] TANG Z, YE W, CHEN H, et al. Role of purines in regulation of metabolic reprogramming. Purinerg Signal,2019,15(4): 423–438. doi: 10.1007/s11302-019-09676-z
    [13] BELLEFEUILLE S D, MOLLE C M, GENDRON F P. Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinerg Signal,2019,15(4): 451–463. doi: 10.1007/s11302-019-09678-x
    [14] VELÁZQUEZ-MIRANDA E, DÍAZ-MUÑOZ M, VÁZQUEZ-CUEVAS F G. Purinergic signaling in hepatic disease. Purinerg Signal,2019,15(4): 477–489. doi: 10.1007/s11302-019-09680-3
    [15] KRÜGEL U. Purinergic receptors in psychiatric disorders. Neuropharmacology,2016,104: 212–225. doi: 10.1016/j.neuropharm.2015.10.032
    [16] JACOBSON K A, MÜLLER C E. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology,2016,104: 31–49. doi: 10.1016/j.neuropharm.2015.12.001
    [17] ORTIZ R, ULRICH H, ZARATE C A, Jr, et al. Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry,2015,57: 117–131. doi: 10.1016/j.pnpbp.2014.10.016
    [18] CHROUSOS G P, GOLD P W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA,1992,267(9): 1244–1252.
    [19] SHAHRAJABIAN M H, SUN W, SOLEYMANI A, et al. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res, 2020[2020-12-28]. https://doi.org/10.1002/ptr.6888.
    [20] POPPELAARS E S, KLACKL J, PLETZER B, et al. Social-evaluative threat: Stress response stages and influences of biological sex and neuroticism. Psychoneuroendocrinology, 2019, 109: 104378[2020-12-28]. https://doi.org/10.1016/j.psyneuen.2019.104378.
    [21] HALL B S, MODA R N, LISTON C. Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiol Stress,2015,1: 174–183. doi: 10.1016/j.ynstr.2014.10.008
    [22] IWATA M, OTA K T, LI X Y, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry,2016,80(1): 12–22. doi: 10.1016/j.biopsych.2015.11.026
    [23] CAO X, LI L P, WANG Q, et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med,2013,19(6): 773–777. doi: 10.1038/nm.3162
    [24] KONGSUI R, BEYNON S B, JOHNSON S J, et al. Chronic stress induces prolonged suppression of the P2X7 receptor within multiple regions of the hippocampus: a cumulative threshold spectra analysis. Brain Behav Immun,2014,42: 69–80. doi: 10.1016/j.bbi.2014.05.017
    [25] PIATO A L, ROSEMBERG D B, CAPIOTTI K M, et al. Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res,2011,36(10): 1876–1886. doi: 10.1007/s11064-011-0509-z
    [26] ZIMMERMANN F F, ALTENHOFEN S, KIST L W, et al. Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol Neurobiol,2016,53(4): 2518–2528. doi: 10.1007/s12035-015-9270-7
    [27] KASTER M P, MACHADO N J, SILVA H B, et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A,2015,112(25): 7833–7838. doi: 10.1073/pnas.1423088112
    [28] CRESPO M, LEÓN-NAVARRO D A, MARTÍN M. Early-life hyperthermic seizures upregulate adenosine A(2A) receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy Behav,2018,86: 173–178. doi: 10.1016/j.yebeh.2018.06.048
    [29] HAO T, DU X, YANG S, et al. Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci, 2020, 258: 118099[2020-12-28]. https://doi.org/10.1016/j.lfs.2020.118099.
    [30] ABBRACCHIO M P, BURNSTOCK G, VERKHRATSKY A, et al. Purinergic signalling in the nervous system: an overview. Trends Neurosci,2009,32(1): 19–29. doi: 10.1016/j.tins.2008.10.001
    [31] RIBEIRO D E, RONCALHO A L, GLASER T, et al. P2X7 receptor signaling in stress and depression. Int J Mol Sci, 2019, 20(11): 2778[2020-12-28]. https://doi.org/10.3390/ijms20112778.
    [32] HISAOKA-NAKASHIMA K, AZUMA H, ISHIKAWA F, et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells, 2020, 9(5): 1068[2020-12-28]. https://doi.org/10.3390/cells9051068.
    [33] JIMENEZ-MATEOS E M, SMITH J, NICKE A, et al. Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull,2019,151: 153–163. doi: 10.1016/j.brainresbull.2018.12.008
    [34] METZGER M W, WALSER S M, APRILE-GARCIA F, et al. Genetically dissecting P2rx7 expression within the central nervous system using conditional humanized mice. Purinerg Signal,2017,13(2): 153–170. doi: 10.1007/s11302-016-9546-z
    [35] ILLES P, VERKHRATSKY A, TANG Y. Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci, 2019, 12: 331[2020-12-28]. https://doi.org/10.3389/fnmol.2019.00331.
    [36] FAROOQ R K, TANTI A, AINOUCHE S, et al. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology,2018,97: 120–130. doi: 10.1016/j.psyneuen.2018.07.016
    [37] YUE N, HUANG H, ZHU X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation, 2017, 14(1): 102[2020-12-28]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0865-y. doi: 10.1186/s12974-017-0865-y.
    [38] DOMINGOS L B, HOTT S C, TERZIAN A L B, et al. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology,2018,128: 474–481. doi: 10.1016/j.neuropharm.2017.08.005
    [39] WEI L, SYED MORTADZA S A, YAN J, et al. ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev,2018,87: 192–205. doi: 10.1016/j.neubiorev.2018.02.005
    [40] HU S, SUN Q, DU W J, et al. Adult stress promotes purinergic signaling to induce visceral pain in rats with neonatal maternal deprivation. Neurosci Bull,2020,36(11): 1271–1280. doi: 10.1007/s12264-020-00575-7
    [41] BORTOLATO M, YARDLEY M M, KHOJA S, et al. Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. Int J Neuropsychopharmacol,2013,16(5): 1059–1070. doi: 10.1017/S1461145712000909
    [42] LI L, ZOU Y, LIU B, et al. Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression. ACS Chem Neurosci,2020,11(24): 4387–4397. doi: 10.1021/acschemneuro.0c00623
    [43] VERMA R, CRONIN C G, HUDOBENKO J, et al. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun,2017,66: 302–312. doi: 10.1016/j.bbi.2017.07.155
    [44] KITTNER H, FRANKE H, FISCHER W, et al. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology,2003,28(3): 435–444. doi: 10.1038/sj.npp.1300043
    [45] WAWRZYNIAK A J, DILSIZIAN V, KRANTZ D S, et al. High concordance between mental stress-induced and adenosine-induced myocardial ischemia assessed using SPECT in heart failure patients: hemodynamic and biomarker correlates. J Nucl Med,2015,56(10): 1527–1533. doi: 10.2967/jnumed.115.157990
    [46] GOMES C V, KASTER M P, TOMÉ A R, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta,2011,1808(5): 1380–1399. doi: 10.1016/j.bbamem.2010.12.001
    [47] LI Y, LI L, WU J, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. Elife, 2020, 9: e57155[2020-12-28]. https://elifesciences.org/articles/57155. doi: 10.7554/eLife.57155.
    [48] PASMAN W J, BOESSEN R, DONNER Y, et al. Effect of caffeine on attention and alertness measured in a home-setting, using web-based cognition tests. JMIR Res Protoc, 2017, 6(9): e169[2020-12-28]. https://www.researchprotocols.org/2017/9/e169/. doi: 10.2196/resprot.6727.
    [49] LEEM Y H, JANG J H, PARK J S, et al. Exercise exerts an anxiolytic effect against repeated restraint stress through 5-HT2A-mediated suppression of the adenosine A2A receptor in the basolateral amygdala. Psychoneuroendocrinology,2019,108: 182–189. doi: 10.1016/j.psyneuen.2019.06.005
    [50] OLIVEIRA L, COSTA A C, NORONHA-MATOS J B, et al. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles. Neuropharmacology,2015,89: 64–76. doi: 10.1016/j.neuropharm.2014.09.004
    [51] PINHEIRO H, GASPAR R, BAPTISTA F I, et al. Adenosine A2A receptor blockade modulates glucocorticoid-induced morphological alterations in axons, but not in dendrites, of hippocampal neurons. Front Pharmacol, 2018, 9: 219[2020-12-28]. https://doi.org/10.3389/fphar.2018.00219.
    [52] BLACKER C J, MILLISCHER V, WEBB L M, et al. EAAT2 as a research target in bipolar disorder and unipolar depression: a systematic review. Mol Neuropsychiatry,2020,5(Suppl 1): 44–59. doi: 10.1159/000501885
    [53] MATOS M, SHEN H Y, AUGUSTO E, et al. Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia. Biol Psychiatry,2015,78(11): 763–774. doi: 10.1016/j.biopsych.2015.02.026
    [54] SERCHOV T, SCHWARZ I, THEISS A, et al. Enhanced adenosine A1 receptor and homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162: 107834[2020-12-28]. doi: 10.1016/j.neuropharm.2019.107834.
    [55] SERCHOV T, CLEMENT H W, SCHWARZ M K, et al. Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of homer1a. Neuron,2015,87(3): 549–562. doi: 10.1016/j.neuron.2015.07.010
    [56] FUENTES E, PALOMO I. Extracellular ATP metabolism on vascular endothelial cells: a pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol,2015,75: 1–6. doi: 10.1016/j.vph.2015.05.002
    [57] VILLANUEVA-CASTILLO B, RIVERA-MANCILLA E, HAANES K A, et al. The role of purinergic P2Y12 and P2Y13 receptors in ADPβS-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats. Purinerg Signal,2020,16(1): 73–84. doi: 10.1007/s11302-020-09689-z
    [58] ZHONG J, AMINA S, LIANG M, et al. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front Neurosci, 2016, 10: 304[2020-12-28]. https://doi.org/10.3389/fnins.2016.00304.
    [59] BURNSTOCK G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov,2008,7(7): 575–590. doi: 10.1038/nrd2605
    [60] PENG W, WU Z, SONG K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 2020, 369(6508): eabb0556[2020-12-28]. https://science.sciencemag.org/content/369/6508/eabb0556.long. doi: 10.1126/science.abb0556.
    [61] CIEŚLAK M, CZARNECKA J, ROSZEK K. The roles of purinergic signaling in psychiatric disorders. Acta Biochim Pol,2016,63(1): 1–9. doi: 10.18388/abp.2015_1004
    [62] BURNSTOCK G. The therapeutic potential of purinergic signalling. Biochem Pharmacol,2018,151: 157–165. doi: 10.1016/j.bcp.2017.07.016
    [63] CHEN J F, CUNHA R A. The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson's disease. Purinerg Signal,2020,16(2): 167–174. doi: 10.1007/s11302-020-09694-2
  • 加载中
计量
  • 文章访问数:  897
  • HTML全文浏览量:  280
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2020-12-29
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回