欢迎来到《四川大学学报(医学版)》

应激相关精神障碍的病理生理机制研究进展

刘波 袁敏兰 胡越 葛汾汾 王静怡 张伟

刘波, 袁敏兰, 胡越, 等. 应激相关精神障碍的病理生理机制研究进展[J]. 四川大学学报(医学版), 2021, 52(1): 22-27. doi: 10.12182/20210160101
引用本文: 刘波, 袁敏兰, 胡越, 等. 应激相关精神障碍的病理生理机制研究进展[J]. 四川大学学报(医学版), 2021, 52(1): 22-27. doi: 10.12182/20210160101
LIU Bo, YUAN Min-lan, HU Yue, et al. A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 22-27. doi: 10.12182/20210160101
Citation: LIU Bo, YUAN Min-lan, HU Yue, et al. A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 22-27. doi: 10.12182/20210160101

栏目: 综 述

应激相关精神障碍的病理生理机制研究进展

doi: 10.12182/20210160101
基金项目: 国家自然科学基金(No. 81871061)和四川省卫生健康委科技项目(No. 20PJ028)资助
详细信息
    作者简介:

    张伟,教授,博士生导师,四川大学医学大数据中心首席科学家,现任四川大学华西临床医学院/华西医院党委书记、华西生物医学大数据中心主任。长期从事精神病与精神卫生学、卫生政策与医院管理研究,探索医院人性管理模式,致力于创伤后应激障碍恐惧环路的分子遗传学研究、创伤后应激障碍与重性抑郁障碍特异性脑神经内表型的表观遗传学研究、心理健康管理服务网络平台关键技术研发与应用。主要研究方向为疾病诊断与治疗决策、卫生保险政策与医院管理。目前担任中华医学会精神医学分会委员、司法精神病学组副组长、精神创伤研究组副组长,中国医师协会精神科医师分会常委,四川省心理咨询师协会会长,中国卫生计生思想政治工作促进会常务理事、委属委管医院分会会长、城市医院分会副会长,中国医院协会后勤管理专委会主任委员。曾多次率领四川大学华西医院地震灾后心理干预小组前往地震前线指导灾后心理干预工作,有丰富的灾后心理康复工作经验。先后承担国家高技术研究发展计划(863计划)、国家重点基础研究发展计划(973计划)、“十五” “十一五”“十二五”国家科技攻关计划等项目10余项,荣获教育部自然科学一等奖、四川省科技进步一等奖等多个奖项

    通讯作者:

    E-mail:weizhang27@163.com

A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders

More Information
  • 摘要: 应激可以提高个体适应环境变化的能力,然而,过度的应激可诱发包括焦虑障碍、抑郁障碍和创伤后应激障碍(post-traumatic stress disorder,PTSD)等在内的应激相关精神障碍。应激可通过脑网络和神经环路、下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal axis,HPA)以及交感神经系统等调控机体激素、免疫炎症水平,还可通过调控基因、转录、蛋白和代谢等水平的分子改变,导致精神障碍的发生。脑-肠轴在应激相关精神障碍发病机制中也扮演着重要的角色。然而,应激相关精神障碍确切的病理生理机制尚未阐明,其发病与个体生理和心理素质密切相关,同时该类疾病又与其他精神和躯体疾病相关联。因此,有必要对个体病前素质开展研究,以及从疾病不同阶段进行深入的临床医学、基础医学和心理学研究,以期进一步阐明应激相关精神障碍的发病机制。
  • 图  1  PTSD情绪调节神经环路示意图

    Figure  1.  Schematic diagram of the neural circuits of PTSD emotion regulation

    图  2  应激相关的神经内分泌、免疫和代谢紊乱的通路

    Figure  2.  The pathways of stress-related neuroendocrine, immune, and metabolic dysregulation

    HPA: Hypothalamic-pituitary-adrenal; SNS: Sympatheticnervous system; TNFα: Tumor necrosis factor α; IFN-γ: Interferon-γ; IL-6: Interleukin-6; TRY: Tryptophan; 5-HT: 5-Hydroxytryptamine; KYN: Kynurenine; OHK: 3-Hydroxykynurenine; HAA: 3-Hydroxyanthranilic acid; QA: Quinolinicacid; NAD: Nicotinamide adenine dinucleotide.

  • [1] LAI J, MA S, WANG Y, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open, 2020, 3(3): e203976[2020-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090843/. doi: 10.1001/jamanetworkopen.2020.3976.
    [2] BEAGLEHOLE B, MULDER R T, FRAMPTON C M, et al. Psychological distress and psychiatric disorder after natural disasters: systematic review and meta-analysis. Br J Psychiatry,2018,213(6): 716–722. doi: 10.1192/bjp.2018.210
    [3] CHARLSON F, VAN OMMEREN M, FLAXMAN A, et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet,2019,394(10194): 240–248. doi: 10.1016/S0140-6736(19)30934-1
    [4] HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry,2019,6(3): 211–224. doi: 10.1016/S2215-0366(18)30511-X
    [5] SONG H, FANG F, TOMASSON G, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA,2018,319(23): 2388–2400. doi: 10.1001/jama.2018.7028
    [6] BAXTER A J, VOS T, SCOTT K M, et al. The global burden of anxiety disorders in 2010. Psychol Med,2014,44(11): 2363–2374. doi: 10.1017/S0033291713003243
    [7] PIGOTT H E, LEVENTHAL A M, ALTER G S, et al. Efficacy and effectiveness of antidepressants: current status of research. Psychother Psychosom,2010,79(5): 267–279. doi: 10.1159/000318293
    [8] ZHANG Y, DAI Z, HU J, et al. Stress-induced changes in modular organizations of human brain functional networks. Neurobiol Stress, 2020, 13: 100231[2020-09-29]. https://doi.org/10.1016/j.ynstr.2020.100231.
    [9] DAVIU N, BRUCHAS M R, MOGHADDAM B, et al. Neurobiological links between stress and anxiety. Neurobiol Stress, 2019, 11: 100191[2020-09-29]. https://doi.org/10.1016/j.ynstr.2019.100191.
    [10] FENSTER R J, LEBOIS L A M, RESSLER K J, et al. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci,2018,19(9): 535–551. doi: 10.1038/s41583-018-0039-7
    [11] PESSOA L. A network model of the emotional brain. Trends Cogn Sci,2017,21(5): 357–371. doi: 10.1016/j.tics.2017.03.002
    [12] YEHUDA R, HOGE C W, MCFARLANE A C, et al. Post-traumatic stress disorder. Nat Rev Dis Primers, 2015, 1: 15057[2020-10-11]. https://www.nature.com/articles/nrdp201557. doi: 10.1038/nrdp.2015.57.
    [13] LIU W Z, ZHANG W H, ZHENG Z H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun, 2020, 11(1): 2221[2020-10-11]. https://www.nature.com/articles/s41467-020-15920-7. doi: 10.1038/s41467-020-15920-7.
    [14] TOVOTE P, FADOK J P, LÜTHI A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci,2015,16(6): 317–331. doi: 10.1038/nrn3945
    [15] SCHUMACHER S, NIEMEYER H, ENGEL S, et al. HPA axis regulation in posttraumatic stress disorder: a meta-analysis focusing on potential moderators. Neurosci Biobehav Rev,2019,100: 35–57. doi: 10.1016/j.neubiorev.2019.02.005
    [16] MORRIS M C, HELLMAN N, ABELSON J L, et al. Cortisol, heart rate, and blood pressure as early markers of PTSD risk: a systematic review and meta-analysis. Clin Psychol Rev,2016,49: 79–91. doi: 10.1016/j.cpr.2016.09.001
    [17] STAEDTKE V, BAI R Y, KIM K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature,2018,564(7735): 273–277. doi: 10.1038/s41586-018-0774-y
    [18] CHENG Y, DESSE S, MARTINEZ A, et al. TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun,2018,69: 556–567. doi: 10.1016/j.bbi.2018.02.003
    [19] MENARD C, PFAU M L, HODES G E, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci,2017,20(12): 1752–1760. doi: 10.1038/s41593-017-0010-3
    [20] XIA C Y, CHU S F, ZHANG S, et al. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. J Ethnopharmacol,2017,208: 207–213. doi: 10.1016/j.jep.2017.06.031
    [21] XU G, LI Y, MA C, et al. Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front Mol Neurosci, 2019, 12: 32[2020-10-15]. https://doi.org/10.3389/fnmol.2019.00032.
    [22] ZRZAVY T, HÖFTBERGER R, BERGER T, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol,2019,45(3): 278–290. doi: 10.1111/nan.12502
    [23] COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol,2017,35: 441–468. doi: 10.1146/annurev-immunol-051116-052358
    [24] LAURANS L, VENTECLEF N, HADDAD Y, et al. Genetic deficiency of indoleamine 2, 3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med,2018,24(8): 1113–1120. doi: 10.1038/s41591-018-0060-4
    [25] WON E, KIM Y K. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr Neuropharmacol,2016,14(7): 665–673. doi: 10.2174/1570159x14666151208113006
    [26] KIM Y K, JEON S W. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol,2018,16(5): 574–582. doi: 10.2174/1570159X15666170913110426
    [27] KIM Y K, AMIDFAR M, WON E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry,2019,91: 103–112. doi: 10.1016/j.pnpbp.2018.06.008
    [28] LIU D, RAY B, NEAVIN D R, et al. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatry, 2018, 8(1): 10[2020-10-15]. https://www.nature.com/articles/s41398-017-0056-8. doi: 10.1038/s41398-017-0056-8.
    [29] POMPILI M, LIONETTO L, CURTO M, et al. Tryptophan and kynurenine metabolites: are they related to depression? Neuropsychobiology,2019,77(1): 23–28. doi: 10.1159/000491604
    [30] CRYAN J F, O'RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis. Physiol Rev,2019,99(4): 1877–2013. doi: 10.1152/physrev.00018.2018
    [31] BAILE M G, GUINEY E L, SANFORD E J, et al. Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain. Mol Biol Cell,2019,30(25): 3057–3072. doi: 10.1091/mbc.E19-08-0451
    [32] COLLINS S M, SURETTE M, BERCIK P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol,2012,10(11): 735–742. doi: 10.1038/nrmicro2876
    [33] SHERWIN E, BORDENSTEIN S R, QUINN J L, et al. Microbiota and the social brain. Science, 2019, 366(6465): eaar2016[2020-10-20]. https://science.sciencemag.org/content/366/6465/eaar2016.long. doi: 10.1126/science.aar2016.
    [34] PELLEGRINI C, ANTONIOLI L, COLUCCI R, et al. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol,2018,136(3): 345–361. doi: 10.1007/s00401-018-1856-5
    [35] ZHENG P, ZENG B, ZHOU C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry,2016,21(6): 786–796. doi: 10.1038/mp.2016.44
    [36] ZHAO Y, YANG G, ZHAO Z, et al. Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav Brain Res, 2020, 395: 112853[2020-10-25]. https://doi.org/10.1016/j.bbr.2020.112853.
    [37] DINAN T G, CRYAN J F. Brain-gut-microbiota axis and mental health. Psychosom Med,2017,79(8): 920–926. doi: 10.1097/PSY.0000000000000519
    [38] DEAN K R, HAMMAMIEH R, MELLON S H, et al. Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. Mol Psychiatry,2020,25(12): 3337–3349. doi: 10.1038/s41380-019-0496-z
    [39] GELERNTER J, SUN N, POLIMANTI R, et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in > 165,000 US veterans. Nat Neurosci,2019,22(9): 1394–1401. doi: 10.1038/s41593-019-0447-7
    [40] MCEWEN B S, BOWLES N P, GRAY J D, et al. Mechanisms of stress in the brain. Nat Neurosci,2015,18(10): 1353–1363. doi: 10.1038/nn.4086
    [41] MEHTA D, VOISEY J, BRUENIG D, et al. Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain Behav Immun,2018,74: 133–142. doi: 10.1016/j.bbi.2018.08.014
    [42] KARABATSIAKIS A, HAMUNI G, WILKER S, et al. Metabolite profiling in posttraumatic stress disorder. J Mol Psychiatry, 2015, 3(1): 2[2020-10-25]. https://jmolecularpsychiatry.biomedcentral.com/articles/10.1186/s40303-015-0007-3. doi: 10.1186/s40303-015-0007-3.
    [43] SOMVANSHI P R, MELLON S H, FLORY J D, et al. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an integrated model and multiomic analysis: role of glucocorticoid receptor sensitivity. Am J Physiol Endocrinol Metab,2019,317(5): E879–E898. doi: 10.1152/ajpendo.00065.2019
    [44] SMOLLER J W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology,2016,41(1): 297–319. doi: 10.1038/npp.2015.266
  • 加载中
图(2)
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  401
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-12-16
  • 刊出日期:  2021-01-20

目录

    /

    返回文章
    返回