Volume 52 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIU Bo, YUAN Min-lan, HU Yue, et al. A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 22-27. doi: 10.12182/20210160101
Citation: LIU Bo, YUAN Min-lan, HU Yue, et al. A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2021, 52(1): 22-27. doi: 10.12182/20210160101

A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders

doi: 10.12182/20210160101
More Information
  • Corresponding author: E-mail: weizhang27@163.com
  • Received Date: 2020-10-29
  • Rev Recd Date: 2020-12-16
  • Publish Date: 2021-01-20
  • Stress can improve an individual’s ability to adapt to environmental changes. However, excessive stress can induce stress-related mental disorders, including anxiety disorder, depression disorder and post-traumatic stress disorder (PTSD). Stress can regulate the level of hormones and immune inflammation in the body through the brain network, neural circuits, hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, thereby causing the occurrence of mental disorders. In addition, stress can mediate the occurrence of mental disorders by regulating molecular changes in the level of genes, transcription, protein and metabolism, etc. Studies have shown that the brain-gut axis also plays an important role in the pathogenesis of stress-related mental disorders. However, the pathophysiological mechanism of stress-related mental disorders remains unclear. Besides, studies have also shown that the onset of stress-related mental disorders is closely associated with the individual's physiological and psychological qualities,which has a cross-talk with other mental and physical diseases as well. Therefore, it is important to study individual premorbid diathesis clinical, and to conduct clinical medical, basic medical, and psychological studies of the different stages of the disease, so as to obtain further understanding of the pathogenesis of stress-related mental disorders.
  • loading
  • [1]
    LAI J, MA S, WANG Y, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open, 2020, 3(3): e203976[2020-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090843/. doi: 10.1001/jamanetworkopen.2020.3976.
    BEAGLEHOLE B, MULDER R T, FRAMPTON C M, et al. Psychological distress and psychiatric disorder after natural disasters: systematic review and meta-analysis. Br J Psychiatry,2018,213(6): 716–722. doi: 10.1192/bjp.2018.210
    CHARLSON F, VAN OMMEREN M, FLAXMAN A, et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet,2019,394(10194): 240–248. doi: 10.1016/S0140-6736(19)30934-1
    HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry,2019,6(3): 211–224. doi: 10.1016/S2215-0366(18)30511-X
    SONG H, FANG F, TOMASSON G, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA,2018,319(23): 2388–2400. doi: 10.1001/jama.2018.7028
    BAXTER A J, VOS T, SCOTT K M, et al. The global burden of anxiety disorders in 2010. Psychol Med,2014,44(11): 2363–2374. doi: 10.1017/S0033291713003243
    PIGOTT H E, LEVENTHAL A M, ALTER G S, et al. Efficacy and effectiveness of antidepressants: current status of research. Psychother Psychosom,2010,79(5): 267–279. doi: 10.1159/000318293
    ZHANG Y, DAI Z, HU J, et al. Stress-induced changes in modular organizations of human brain functional networks. Neurobiol Stress, 2020, 13: 100231[2020-09-29]. https://doi.org/10.1016/j.ynstr.2020.100231.
    DAVIU N, BRUCHAS M R, MOGHADDAM B, et al. Neurobiological links between stress and anxiety. Neurobiol Stress, 2019, 11: 100191[2020-09-29]. https://doi.org/10.1016/j.ynstr.2019.100191.
    FENSTER R J, LEBOIS L A M, RESSLER K J, et al. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci,2018,19(9): 535–551. doi: 10.1038/s41583-018-0039-7
    PESSOA L. A network model of the emotional brain. Trends Cogn Sci,2017,21(5): 357–371. doi: 10.1016/j.tics.2017.03.002
    YEHUDA R, HOGE C W, MCFARLANE A C, et al. Post-traumatic stress disorder. Nat Rev Dis Primers, 2015, 1: 15057[2020-10-11]. https://www.nature.com/articles/nrdp201557. doi: 10.1038/nrdp.2015.57.
    LIU W Z, ZHANG W H, ZHENG Z H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun, 2020, 11(1): 2221[2020-10-11]. https://www.nature.com/articles/s41467-020-15920-7. doi: 10.1038/s41467-020-15920-7.
    TOVOTE P, FADOK J P, LÜTHI A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci,2015,16(6): 317–331. doi: 10.1038/nrn3945
    SCHUMACHER S, NIEMEYER H, ENGEL S, et al. HPA axis regulation in posttraumatic stress disorder: a meta-analysis focusing on potential moderators. Neurosci Biobehav Rev,2019,100: 35–57. doi: 10.1016/j.neubiorev.2019.02.005
    MORRIS M C, HELLMAN N, ABELSON J L, et al. Cortisol, heart rate, and blood pressure as early markers of PTSD risk: a systematic review and meta-analysis. Clin Psychol Rev,2016,49: 79–91. doi: 10.1016/j.cpr.2016.09.001
    STAEDTKE V, BAI R Y, KIM K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature,2018,564(7735): 273–277. doi: 10.1038/s41586-018-0774-y
    CHENG Y, DESSE S, MARTINEZ A, et al. TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun,2018,69: 556–567. doi: 10.1016/j.bbi.2018.02.003
    MENARD C, PFAU M L, HODES G E, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci,2017,20(12): 1752–1760. doi: 10.1038/s41593-017-0010-3
    XIA C Y, CHU S F, ZHANG S, et al. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. J Ethnopharmacol,2017,208: 207–213. doi: 10.1016/j.jep.2017.06.031
    XU G, LI Y, MA C, et al. Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front Mol Neurosci, 2019, 12: 32[2020-10-15]. https://doi.org/10.3389/fnmol.2019.00032.
    ZRZAVY T, HÖFTBERGER R, BERGER T, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol,2019,45(3): 278–290. doi: 10.1111/nan.12502
    COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol,2017,35: 441–468. doi: 10.1146/annurev-immunol-051116-052358
    LAURANS L, VENTECLEF N, HADDAD Y, et al. Genetic deficiency of indoleamine 2, 3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med,2018,24(8): 1113–1120. doi: 10.1038/s41591-018-0060-4
    WON E, KIM Y K. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr Neuropharmacol,2016,14(7): 665–673. doi: 10.2174/1570159x14666151208113006
    KIM Y K, JEON S W. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol,2018,16(5): 574–582. doi: 10.2174/1570159X15666170913110426
    KIM Y K, AMIDFAR M, WON E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry,2019,91: 103–112. doi: 10.1016/j.pnpbp.2018.06.008
    LIU D, RAY B, NEAVIN D R, et al. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatry, 2018, 8(1): 10[2020-10-15]. https://www.nature.com/articles/s41398-017-0056-8. doi: 10.1038/s41398-017-0056-8.
    POMPILI M, LIONETTO L, CURTO M, et al. Tryptophan and kynurenine metabolites: are they related to depression? Neuropsychobiology,2019,77(1): 23–28. doi: 10.1159/000491604
    CRYAN J F, O'RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis. Physiol Rev,2019,99(4): 1877–2013. doi: 10.1152/physrev.00018.2018
    BAILE M G, GUINEY E L, SANFORD E J, et al. Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain. Mol Biol Cell,2019,30(25): 3057–3072. doi: 10.1091/mbc.E19-08-0451
    COLLINS S M, SURETTE M, BERCIK P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol,2012,10(11): 735–742. doi: 10.1038/nrmicro2876
    SHERWIN E, BORDENSTEIN S R, QUINN J L, et al. Microbiota and the social brain. Science, 2019, 366(6465): eaar2016[2020-10-20]. https://science.sciencemag.org/content/366/6465/eaar2016.long. doi: 10.1126/science.aar2016.
    PELLEGRINI C, ANTONIOLI L, COLUCCI R, et al. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol,2018,136(3): 345–361. doi: 10.1007/s00401-018-1856-5
    ZHENG P, ZENG B, ZHOU C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry,2016,21(6): 786–796. doi: 10.1038/mp.2016.44
    ZHAO Y, YANG G, ZHAO Z, et al. Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav Brain Res, 2020, 395: 112853[2020-10-25]. https://doi.org/10.1016/j.bbr.2020.112853.
    DINAN T G, CRYAN J F. Brain-gut-microbiota axis and mental health. Psychosom Med,2017,79(8): 920–926. doi: 10.1097/PSY.0000000000000519
    DEAN K R, HAMMAMIEH R, MELLON S H, et al. Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. Mol Psychiatry,2020,25(12): 3337–3349. doi: 10.1038/s41380-019-0496-z
    GELERNTER J, SUN N, POLIMANTI R, et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in > 165,000 US veterans. Nat Neurosci,2019,22(9): 1394–1401. doi: 10.1038/s41593-019-0447-7
    MCEWEN B S, BOWLES N P, GRAY J D, et al. Mechanisms of stress in the brain. Nat Neurosci,2015,18(10): 1353–1363. doi: 10.1038/nn.4086
    MEHTA D, VOISEY J, BRUENIG D, et al. Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain Behav Immun,2018,74: 133–142. doi: 10.1016/j.bbi.2018.08.014
    KARABATSIAKIS A, HAMUNI G, WILKER S, et al. Metabolite profiling in posttraumatic stress disorder. J Mol Psychiatry, 2015, 3(1): 2[2020-10-25]. https://jmolecularpsychiatry.biomedcentral.com/articles/10.1186/s40303-015-0007-3. doi: 10.1186/s40303-015-0007-3.
    SOMVANSHI P R, MELLON S H, FLORY J D, et al. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an integrated model and multiomic analysis: role of glucocorticoid receptor sensitivity. Am J Physiol Endocrinol Metab,2019,317(5): E879–E898. doi: 10.1152/ajpendo.00065.2019
    SMOLLER J W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology,2016,41(1): 297–319. doi: 10.1038/npp.2015.266
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (1179) PDF downloads(62) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint