欢迎来到《四川大学学报(医学版)》

种植体周围炎小鼠模型的研究进展

朱睿 刘蔚晴 张鹏 张紫涵 梁星

朱睿, 刘蔚晴, 张鹏, 等. 种植体周围炎小鼠模型的研究进展[J]. 四川大学学报(医学版), 2020, 51(6): 767-770. doi: 10.12182/20201160205
引用本文: 朱睿, 刘蔚晴, 张鹏, 等. 种植体周围炎小鼠模型的研究进展[J]. 四川大学学报(医学版), 2020, 51(6): 767-770. doi: 10.12182/20201160205
ZHU Rui, LIU Wei-qing, ZHANG Peng, et al. Current Advances in Peri-implantitis Mouse Model[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 767-770. doi: 10.12182/20201160205
Citation: ZHU Rui, LIU Wei-qing, ZHANG Peng, et al. Current Advances in Peri-implantitis Mouse Model[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 767-770. doi: 10.12182/20201160205

栏目: 口腔医学进展

种植体周围炎小鼠模型的研究进展

doi: 10.12182/20201160205
基金项目: 国家高科技研究发展(863)计划(No. 2015AA033701-4)和国家自然科学基金(No. 81900967)资助
详细信息
    通讯作者:

    E-mail:xingliangdent@vip.163.com

Current Advances in Peri-implantitis Mouse Model

More Information
  • 摘要: 种植体周围炎是口腔种植修复最常见和棘手的并发症,是影响种植修复远期效果,导致种植失败的主要原因之一。由于研究手段的局限,其发病机制及病理过程尚未明确。动物模型是研究疾病发病机制的重要工具,随着种植技术的日臻成熟,种植体周围炎小鼠模型开始被用于基础实验研究。本文将结合国内外学者近年的研究进展,从小鼠模型的优势、小鼠品系的影响、微种植体的设计、微种植体植入的方式以及小鼠种植体周围炎的诱导方式五个方面进行综述,旨在为相关研究者提供参考和帮助。与种植体周围炎大动物模型相比,种植体周围炎小鼠模型使用更加灵活,较低的成本可以更好地控制样本量的大小,更短的建模时间可以更好地控制实验周期,小鼠基因组测序的完成,以及遗传操作系统的成熟使其发病机制的研究成为可能。但是,目前种植体周围炎小鼠模型仍存在一定的局限性,比如由于小鼠口腔大小的限制,种植手术操作的难度较大,复杂的干预措施难以实施,且由于种植体周围炎小鼠模型发展时间较短,种植体植入方法、种植体周围炎诱导方法等相关技术理论尚不统一,仍需要进一步地研究夯实理论。
  • [1] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介. 国际口腔医学杂志,2019,46(2): 125–134. doi: 10.7518/gjkq.2019001
    [2] DREYER H, GRISCHKE J, TIEDE C, et al. Epidemiology and risk factors of peri-implantitis: a systematic review. J Periodont Res,2018,53(5): 657–681. doi: 10.1111/jre.12562
    [3] DOORNEWAARD R, JACQUET W, COSYN J, et al. How do peri‐implant biologic parameters correspond with implant survival and peri‐implantitis? A critical review. Clin Oral Implants Res, 2018, 29(6):100-123.
    [4] CARCUAC O, BERGLUNDH T. Composition of human peri-implantitis and periodontitis lesions. J Dent Res,2014,93(11): 1083–1088. doi: 10.1177/0022034514551754
    [5] SCHWARZ F, SCULEAN A, ENGEBRETSON S P, et al. Animal models for peri-implant mucositis and peri-implantitis. Periodontology 2000,2015,68(1): 168–181. doi: 10.1111/prd.12064
    [6] WEINBERG M A, BRAL M. Laboratory animal models in periodontology. J Clin Periodontol,1999,26(6): 335–340. doi: 10.1034/j.1600-051X.1999.260601.x
    [7] SCHOU S, HOLMSTRUP P, STOLTZE K, et al. Probing around implants and teeth with healthy or inflamed peri-implant mucosa/gingiva. A histologic comparison in cynomolgus monkeys (Macaca fascicularis). Clin Oral Implant Res,2002,13(2): 113–126. doi: 10.1034/j.1600-0501.2002.130201.x
    [8] PERSSON L G, ERICSSON I, BERGLUNDH T, et al. Guided bone regeneration in the treatment of periimplantitis. Clin Oral Implant Res,1996,7(4): 366–372. doi: 10.1034/j.1600-0501.1996.070410.x
    [9] YU X, HU Y, FREIRE M, et al. Role of toll-like receptor 2 in inflammation and alveolar bone loss in experimental peri-implantitis versus periodontitis. J Periodont Res,2018,53(1): 98–106. doi: 10.1111/jre.12492
    [10] DENG S, HU Y, ZHOU J, et al. TLR4 mediates alveolar bone resorption in experimental peri‐implantitis through regulation of CD45+ cell infiltration, RANKL/OPG ratio, and inflammatory cytokine production. J Periodontol,2020,91(5): 671–682. doi: 10.1002/JPER.18-0748
    [11] 宋续军, 张倩, 王少磊, 等. 实验性种植体周围炎小鼠模型的建立及TNF-α在模型小鼠牙龈组织中的表达. 吉林大学学报(医学版),2020,46(1): 40–44.
    [12] 林兆宇, 高翔. 小鼠的遗传学研究. 生命科学,2006,18(5): 437–441. doi: 10.3969/j.issn.1004-0374.2006.05.007
    [13] 黄镜静, 谭颖徽. 牙周炎动物模型的研究进展. 现代生物医学进展,2012,12(5): 992–994.
    [14] HIYARI S, NAGHIBI A, WONG R, et al. Susceptibility of different mouse strains to peri-implantitis. J Periodont Res,2018,53(1): 107–116. doi: 10.1111/jre.12493
    [15] DING L, ZHANG P, WANG X, et al. A doxycycline-treated hydroxyapatite implant surface attenuates the progression of peri-implantitis: a radiographic and histological study in mice. Clin Implant Dent Relat Res,2019,21(1): 154–159. doi: 10.1111/cid.12695
    [16] VARON-SHAHAR E, SHUSTERMAN A, PIATTELLI A, et al. Peri-implant alveolar bone resorption in an innovative peri-implantitis murine model: effect of implant surface and onset of infection. Clin Implant Dent Relat Res,2019,21(4): 723–733. doi: 10.1111/cid.12800
    [17] WONG R L, HIYARI S, YAGHSEZIAN A, et al. Comparing the healing potential of late-stage periodontitis and peri-implantitis. J Oral Implantol,2017,43(6): 437–445. doi: 10.1563/aaid-joi-D-17-00157
    [18] NGUYEN VO T N, HAO J, CHOU J, et al. Ligature induced peri-implantitis: tissue destruction and inflammatory progression in a murine model. Clin Oral Implant Res,2017,28(2): 129–136. doi: 10.1111/clr.12770
    [19] PIRIH F Q, HIYARI S, BARROSO A D V, et al. Ligature-induced peri-implantitis in mice. J Periodont Res,2015,50(4): 519–524. doi: 10.1111/jre.12234
    [20] 刘秀娟, 丁继芬. 上颌前牙延期种植、即刻种植、早期种植的最新研究进展. 山东医学高等专科学校学报,2016,38(2): 138–140. doi: 10.3969/j.issn.1674-0947.2016.02.022
    [21] MOURARET S, HUNTER D J, BARDET C, et al. A pre-clinical murine model of oral implant osseointegration. Bone,2014,58: 177–184. doi: 10.1016/j.bone.2013.07.021
    [22] BIGUETTI C C, CAVALLA F, SILVEIRA E M, et al. Oral implant osseointegration model in C57Bl/6 mice: microtomographic, histological, histomorphometric and molecular characterization. J Appl Oral Sci, 2018, 26: e20170601[2020-07-03]. https://doi.org/10.1590/1678-7757-2017-0601.
    [23] PAN K, HU Y, WANG Y, et al. RANKL blockade alleviates peri-implant bone loss and is enhanced by anti-inflammatory microRNA-146a through TLR2/4 signaling. Int J Implant Dent,2020,6(1): 15[2020-07-03]. https://doi.org/10.1186/s40729-020-00210-0. doi: 10.1186/s40729-020-00210-0
    [24] LI H, CHEN Z, ZHONG X, et al. Mangiferin alleviates experimental peri-implantitis via suppressing interleukin-6 production and Toll-like receptor 2 signaling pathway. J Orthopaedic Surg Res,2019,14(1): 325[2020-07-03]. https://doi.org/10.1186/s13018-019-1387-3 . doi: 10.1186/s13018-019-1387-3
    [25] HIYARI S, WONG R L, YAGHSEZIAN A, et al. Ligature-induced peri-implantitis and periodontitis in mice. J Clin Periodontol,2018,45(1): 89–99. doi: 10.1111/jcpe.12817
    [26] WONG R L, HIYARI S, YAGHSEZIAN A, et al. Early intervention of peri-implantitis and periodontitis using a mouse model. J Periodontol,2018,89(6): 669–679. doi: 10.1002/JPER.17-0541
    [27] 程磊, 于海洋, 吴尧, 等. 牙种植体周围微生物研究. 华西口腔医学杂志,2019,37(1): 7–12.
    [28] TZACH-NAHMAN R, MIZRAJI G, SHAPIRA L, et al. Oral infection with P. gingivalis induces peri-implantitis in a murine model: evaluation of bone loss and the local inflammatory response. J Clin Periodontol,2017,44(7): 739–748. doi: 10.1111/jcpe.12735
    [29] PIRIH F Q, HIYARI S, LEUNG H Y, et al. A murine model of lipopolysaccharide-induced peri-implant mucositis and peri-implantitis. J Oral Implantol, 2015, 41(5): e158–e164.[2020-06-14]. https://doi.org/10.1563/aaid-joi-D-14-00068.
    [30] 邹德荣, 朱红, 瞿晓辉. 种植体周围炎动物模型建立及意义. 实用口腔医学杂志,2005,21(4): 463–466. doi: 10.3969/j.issn.1001-3733.2005.04.007
    [31] 朱白雪, 高晓蔚, 戴晓玮. 种植体周围炎动物模型的研究进展. 口腔医学,2018,38(8): 747–751.
  • 加载中
计量
  • 文章访问数:  2360
  • HTML全文浏览量:  899
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-15
  • 修回日期:  2020-10-19
  • 刊出日期:  2020-11-20

目录

    /

    返回文章
    返回