欢迎来到《四川大学学报(医学版)》

白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究

王峥 周学东 任彪

王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748. doi: 10.12182/20201160203
引用本文: 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748. doi: 10.12182/20201160203
WANG Zheng, ZHOU Xue-dong, REN Biao. Ergosterol Pathway of Candida albicans Promotes the Growth and Cariogenic Virulence of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 742-748. doi: 10.12182/20201160203
Citation: WANG Zheng, ZHOU Xue-dong, REN Biao. Ergosterol Pathway of Candida albicans Promotes the Growth and Cariogenic Virulence of Streptococcus mutans[J]. JOURNAL OF SICHUAN UNIVERSITY (MEDICAL SCIENCE EDITION), 2020, 51(6): 742-748. doi: 10.12182/20201160203

栏目: 口腔医学进展

白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究

doi: 10.12182/20201160203
基金项目: 国家自然科学青年基金(No. 81600858)资助
详细信息
    通讯作者:

    E-mail:renbiao@scu.edu.cn

Ergosterol Pathway of Candida albicans Promotes the Growth and Cariogenic Virulence of Streptococcus mutans

  • 摘要:   目的  探究白色念珠菌(C. albicans)对变异链球菌(S. mutans)生长及毒力的影响,验证麦角甾醇通路在其中的作用。  方法  将S. mutans菌株UA159、C. albicans野生型5314单独培养及共培养(体积比1∶1混合)24 h后,检测各组菌液光密度(OD)600 nm值,并利用菌落形成单位(colony-forming units,CFU)计数检测S. mutans浓度,以反映C. albicansS. mutans生长的影响;利用蒽酮法检测生物膜胞外多糖产量,pH计检测菌液产酸能力,以反映C. albicansS. mutans毒力的影响;将不同C. albicans麦角甾醇合成相关通路突变株与S. mutans共培养后,检测突变株对S. mutans生长的影响;利用0 mg/L、0.012 5 mg/L、0.025 mg/L氟康唑抑制C. albicans麦角甾醇合成相关通路,24 h后检测C. albicans野生型和S. mutans在单独培养和混合培养下CFU的变化,以验证该通路作用。  结果  C. albicans野生型与S. mutans共培养后,与S. mutans 单独培养组相比,混合菌液中OD600值和CFU升高(P<0.05),S. mutans胞外多糖产量增加(P<0.05),pH下降更明显(P<0.05)。42株C. albicans突变株与S. mutans共培养后,有14株菌对S. mutans促进生长的作用消失(P<0.05),其中包含6株C. albicans麦角甾醇合成相关通路的突变株,这6株与S. mutans共培养后,菌液中S. mutans的CFU不变或下降。添加0.012 5 mg/L、0.025 mg/L氟康唑抑制麦角甾醇通路后,C. albicans 野生型与 S. mutans混合培养的菌液中,S. mutans的CFU较未添加氟康唑组降低(P<0.05),而C. albicans单独培养组、S. mutans单独培养组的CFU无明显变化(P>0.05),C. albicans野生型与S. mutans混合培养的菌液中C. albicans的CFU也无明显改变(P>0.05)。  结论  C. albicans能通过麦角甾醇相关通路增强S. mutans生长能力及毒力,此过程可被氟康唑抑制,有望成为防治龋病的新策略。
  • 图  1  C. albicans(A)及S. mutans(B)革兰染色镜检图。 ×100

    Figure  1.  Gram staining of C. albicans (A) and S. mutans (B). ×100

    图  2  C. albicans野生型、S. mutans经单独培养及混合培养后的生长能力(A,n=3);各组菌液中C. albicansS. mutans浓度(B,n=3)

    Figure  2.  The growth ability of C. albicans wild-type and S. mutans in single- and co-cultivations (A, n=3) ; Colony-forming unit counts of C. albicans and S. mutans in different groups (B, n=3)

    WT: Candida albicans wild-type; SM: Streptococcus mutans; CC: Co-cultivation group; *P<0.05, ***P<0.001.

    图  3  各组上清液pH值(A)及胞外多糖产量(B)(n=3)

    Figure  3.  pH value of supematant (A) and the water-insoluble glucan (B) in different groups (n=3)

    WT: Candida albicans wild-type; SM: Streptococcus mutans; CC: Co-cultivation group; YNB: Yeast nitrogen base (control); *P<0.05, ***P<0.001.

    图  4  C. albicans野生型(WT)及C. albicans各突变株(编号1~42)作用后, S. mutans在菌液中的生长能力(A,n=3);C. albicans野生型(WT)及C. albicans麦角甾醇通路突变株作用后,S. mutans的CFU改变(B,n=3)

    Figure  4.  The growth ability of S. mutans after co-cultivation with C. albicans wild-type (WT) and mutant strains (number 1-42) in suspension (A, n=3); colony-forming unit counts of S. mutans after co-cultivation with C. albicans wild-type (WT) and ergosterol pathway mutant strains (B, n=3)

    WT: Candida albicans wild-type; SM: Streptococcus mutans; NS: Non-significant.

    图  5  不同浓度氟康唑作用后,单独培养及共培养菌液中C. albicans野生型与 S. mutans的浓度值(n=3)

    Figure  5.  Colony-forming unit counts of C. albicans wild-type and S. mutans in single- and co-cultivations treated with fluconazole (n=3)

    Flc: Fluconazole; WT: Candida albicans wild-type; SM: Streptococcus mutans; CC: Co-cultivation group; **P<0.01.

    表  1  C. albicans麦角甾醇通路突变株

    Table  1.   Ergosterol pathway mutants of C. albicans

    Mutant strainParental strainGenotype
    DSY1216 Wild-type erg11/ERG11
    DSY1336 Wild-type erg3/ERG3 erg11/ERG11
    DSY1431 Wild-type erg11/erg11 erg3/ERG3
    DSY1751 Wild-type erg11/ERG11 erg3/erg3
    DSY1764 Wild-type erg11/erg11 erg3/erg3
    DSY1769 Wild-type erg11/erg11
    下载: 导出CSV
  • [1] BAWASKAR H S, BAWASKAR P H. Oral diseases: a global public health challenge. Lancet,2020,395(10219): 185–186.
    [2] LAMONT R J, KOO H, HAJISHENGALLIS G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol,2018,6(12): 745–759.
    [3] CHOW K F. A review of excessive sugar metabolism on oral and general health. Chin J Dent Res,2017,20(4): 193–198.
    [4] SCANNAPIECO F A, CANTOS A. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol 2000,2016,72(1): 153–175.
    [5] QUAN J K, WANG X Z, SUN X Y, et al. Permanent teeth caries status of 12- to 15-year-olds in China: findings from the 4th national oral health survey. Chin J Dent Res,2018,21(3): 181–193.
    [6] 周学东, 程磊, 郑黎薇. 全生命周期的龋病管理. 中华口腔医学杂志,2018,53(6): 367–373. doi: 10.3760/cma.j.issn.1002-0098.2018.06.002
    [7] ABUSLEME L, DUPUY A K, DUTZAN N, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. Isme J,2013,7(5): 1016–1025.
    [8] LEMOS JA, PALMER SR, ZENG L, et al. The biology of Streptococcus mutans.Microbiol Spectr, 2019, 7(1): 10.1128/microbiolspec.GPP3-0051-2018[2020-04-01].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615571/. doi: 10.1128/microbiolspec.GPP3-0051-2018.
    [9] 李蓝, 张博文, 李继遥. 变异链球菌毒力相关转录调节因子的研究进展. 华西口腔医学杂志,2016,34(6): 643–646. doi: 10.7518/hxkq.2016.06.018
    [10] KRZYŚCIAK W, JURCZAK A, KOŚCIELNIAK D, et al. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis,2014,33(4): 499–515.
    [11] SINGH A, VERMA R, MURARI A, et al. Oral candidiasis: an overview. J Oral Maxillofac Pathol,2014,18(Suppl 1): S81–S85.
    [12] METWALLI K H, KHAN S A, KROM B P, et al. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog,2013,9(10): e1003616[2020-04-01]. https://doi.org/10.1371/journal.ppat.1003616.
    [13] SANGUINETTI M, POSTERARO B, LASS-FLÖRL C. Antifungal drugresistance among Candida species: mechanisms andclinical impact. Mycoses,2015,58(Suppl 2): 2–13.
    [14] DENG L, ZOU L, WU J, et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergosterol pathway. Int J Antimicrob Agents,2019,53(6): 805–813.
    [15] DENG L, LI W, HE Y, et al. Cross-kingdom interaction of Candida albicans and Actinomyces viscosus elevated cariogenic virulence. Arch Oral Biol,2019,100: 106–112.
    [16] ZHOU Y, LIAO M, ZHU C,et al. ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection.Int J Oral Sci, 2018, 10(2):9[2020-04-01].https://www.nature.com/articles/s41368-018-0013-2. doi: 10.1038/s41368-018-0013-2.
    [17] LIANG J, LI M, REN B, et al. The anti-caries effects of dental adhesive resin influenced by the position of functional groups in quaternary ammonium monomers. Dent Mater,2018,34(3): 400–411.
    [18] REN Z, CUI T, ZENG J, et al. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob Agents Chemother,2015,60(1): 126–135.
    [19] MILLSOP J W, FAZEL N. Oral candidiasis. Clin Dermatol,2016,34(4): 487–494.
    [20] PEREIRA D, SENEVIRATNE C J, KOGA-ITO C Y, et al. Is the oral fungal pathogen Candida albicans a cariogen? Oral Dis,2018,24(4): 518–526.
    [21] PERSOON I F, CRIELAARD W, ZOK A R. Prevalence and nature of fungi in root canal infections: a systematic review and meta-analysis. Int Endod J,2017,50(11): 1055–1066.
    [22] XIAO J, HUANG X, ALKHERS N, et al. Candida albicans and early childhood caries: a systematic review and meta-analysis. Caries Res,2018,52(1/2): 102–112.
    [23] FALSETTA M L, KLEIN M I, COLONNE P M, et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun,2014,82(5): 1968–1981.
    [24] XIAO J, MOON Y, LI L, et al. Candida albicans carriage in children with severe early childhood caries (S-ECC) and maternal relatedness. PLoS One, 2016, 11(10): e0164242[2020-05-17]. https://doi.org/10.1371/journal.pone.0164242.
    [25] HWANG G, LIU Y, KIM D, et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog,2017,13(6): e1006407[2020-05-17].https://doi.org/10.1371/journal.ppat.1006407.
    [26] GREGOIRE S, XIAO J, SILVA B B, et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol,2011,77(18): 6357–6367.
    [27] BOWEN W H, KOO H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res,2011,45(1): 69–86.
    [28] ZENG L, BURNE R A. Comprehensive mutational analysisof sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferasesystem permease. J Bacteriol,2013,195(4): 833–843.
    [29] HANS S, FATIMA Z, HAMEED S. Retrograde signaling disruption influences ABC superfamily transporter, ergosterol and chitin levels along with biofilm formation in Candida albicans. J Mycol Med,2019,29(3): 210–218.
    [30] LIU J F, XIA J J, NIE K L, et al. Outline of the biosynthesis and regulation of ergosterol in yeast.World J Microbiol Biotechnol, 2019, 35(7):98[2020-05-17].https://link.springer.com/article/ 10.1007/s11274-019-2673-2. doi: 10.1007/s11274-019-2673-2.
    [31] MISHRA N N, PRASAD T, SHARMA N, et al. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung,2007,54(3): 201–235.
    [32] DANISVIJAY D, JAYANTHI S, MEENAKSHI N, et al. Characterization of virulence factors, antifungal resistance with ERG-11 gene among Candida species isolated from pulmonary samples. Microb Pathog,2019,137: 103750[2020-04-17].https://doi.org/10.1016/j.micpath.2019.103750.
    [33] VINCENT BM, LANCASTER AK, SCHERZ-SHOUVAL R, et al. Fitness Trade-Offs Restrict the Evolution of Resistance to Amphotericin B. PLoS Biol, 2013, 11(10):e1001692[2020-04-17]. https://doi.org/10.1371/journal.pbio.1001692.
    [34] SHAPIRO R S, ROBBINS N, COWEN L E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev,2011,75(2): 213–267.
    [35] YI X, HUA Q, YAN W, et al. Requirement for ergosterol in berberine tolerance underlies synergism of fluconazole and berberine against fluconazole-resistant Candida albicans isolates. Front Cell Infect Microbiol,2017,7: 491[2020-04-17].https://doi.org/10.3389/fcimb.2017.00491.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2046
  • HTML全文浏览量:  636
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 修回日期:  2020-10-12
  • 刊出日期:  2020-11-20

目录

    /

    返回文章
    返回